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Titre : Structure de graphes, mineurs et arbres induits

Résumé : Cette thèse traite des questions structurelles de la théorie des graphes qui
découlent de motivations algorithmiques. En effet, les problèmes de graphes NP-complets
sont typiquement plus faciles dès lors qu’on restreint la classe de graphes. Sur les arbres,
qui sont des graphes connexes sans cycles, la programmation dynamique donne souvent
un algorithme linéaire. Tous les graphes ne sont pas des arbres, mais il est possible
de quantifier à quel point un graphe est plus complexe qu’un arbre. Un outil standard
pour cela est la largeur arborescente, qui est profondément liée à la théorie des mineurs,
comme nous allons voir dans le premier chapitre. Une autre stratégie consiste à obtenir
une structure arborescente en supprimant le moins de sommets possible, comme nous le
verrons dans le deuxième chapitre.

Le premier chapitre porte sur l’idée de graphes universels pour la relation de mineur.
Un graphe est mineur-universel pour une famille de graphes s’il contient comme mineur
chaque graphe de la famille. Un résultat célèbre de Robertson, Seymour et Thomas
en 1994 montre que la grille 2n × 2n est mineur-universelle pour la famille des graphes
planaires à n sommets. Une façon d’affiner ce résultat est de trouver des sous-classes de
graphes planaires à n sommets qui admettent une grille mineure-universelle plus petite.
On dit que qu’un graphe planaire G admet un dessin sur une grille s’il existe un plonge-
ment de G sur une grille, tel que les sommets de G sont des sommets de la grille, et ses
arêtes sont des suites de segments dont les jonctions sont placées sur des sommets des la
grille. La taille d’un tel dessin est le nombre de sommets de la grille. L’idée est d’établir
une relation entre la taille d’un dessin sur une grille d’un graphe H, et la taille de la plus
petite grille qui admet H comme mineur. Une autre direction consiste à le généraliser
à une classe plus grande: les graphes de genre borné. Plus précisément, nous montrons
qu’il existe un graphe de genre g mineur-universel pour les graphes à n sommets de genre
g, et dont la taille est polynomiale en n et g.

Le deuxième chapitre se concentre sur la recherche d’une grande forêt (union de
plusieurs arbres) induite dans un graphe. Un cas intéressant est celui où la forêt en
question est un unique chemin. En 2017, Esperet, Lemoine et Maffray ont conjecturé que
tout graphe k-dégénéré avec un chemin à n sommets admet un chemin induit à log nΩk(1)

sommets. Nous prouvons que c’est le cas pour plusieurs classes de graphes dégénérés,
y compris la classe des graphes excluant un graphe comme mineur topologique. Dans
le cas d’une forêt, le théorème d’Erdős-Pósa stipule que si un graphe n’a pas k cycles
disjoints, alors il admet un ensemble de O(k log k) sommets dont l’élimination produit
une forêt, appelé feedback vertex set. Nous obtenons une propriété similaire pour les
graphes sans sous-graphe Kt,t et sans k cycles indépendants (disjoints et sans arête entre
eux). La contrepartie de cette généralisation est un feedback vertex set dont la taille est
logarithmique en la taille du graphe, et cette borne peut être atteinte.

Mots-clés : graphe, structure, mineur, arbre, planaire, surface
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Title: Structure of Graphs: Minors and Induced Trees

Abstract: This thesis deals with structural graph theory questions that stem
from algorithmic motivations. Indeed, NP-complete graph problems are typically
easier on restricted graph classes. On trees, which are connected graphs without
cycles, dynamic programming often yields a linear algorithm. Not every graph is
a tree, but we can measure how much more complex the graph is. A standard tool
is the treewidth which is deeply connected to minor theory, as discussed in the
first chapter. Another strategy is to obtain a much simpler structure by deleting
as few vertices as possible, as discussed in the second chapter.

The first chapter concerns the idea of minor-universality. A graph is minor-
universal for a family of graphs if it contains as a minor every graph in the family.
A celebrated result of Robertson, Seymour, and Thomas in 1994 shows that the
2n × 2n-grid is minor-universal for the family of n-vertex planar graphs. One
direction to refine this result is to find some subclasses of n-vertex planar graphs
that admit a smaller minor-universal grid. A poly-line grid drawing of a planar
graph G is a planar embedding of G such that its vertices are mapped on the
vertices of the grid and its edges are curves made up of line segments connecting
on vertices of the grid. The size of such drawing is the order of the grid. The idea
is to establish a relation between the size of a poly-line grid drawing of a graph H
and the order of the smallest grid that admits H as a minor. Another direction
is to extend the result from planarity to bounded genus. More precisely, we show
that there is a graph of genus g minor-universal for the n-vertex graphs of genus
g, and whose order is polynomial in n and g.

The second chapter focuses on finding a large induced forest in a graph. An
interesting case is when the forest is required to be a single path. In 2017, Esperet,
Lemoine, and Maffray conjectured that every k-degenerate graph with an n-path
admits an induced log nΩk(1)-path. We prove that this holds for several degenerate
classes, including the class of topological-minor-free graphs. In the case of a forest,
the Erdős-Pósa theorem states that if a graph does not have k vertex-disjoint
cycles, then it admits a set of O(k log k) vertices whose removal yields a forest,
called the feedback vertex set. We obtain a similar property for the graphs with no
Kt,t-subgraph and no k independent cycles (vertex-disjoint and no edge between
them). The trade-off for this generalization is a feedback vertex set whose size
depends in the logarithm of the order, and this is sharp.

Keywords: graph, structure, minor, tree, planar, surface
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Résumé étendu en français

Cette thèse traite des questions structurelles de la théorie des graphes qui découlent
de motivations algorithmiques. En effet, les problèmes de graphes NP-complets
sont typiquement plus faciles dès lors qu’on restreint la classe de graphes. Sur les
arbres, qui sont des graphes connexes sans cycles, la programmation dynamique
donne souvent un algorithme linéaire. Tous les graphes ne sont pas des arbres, mais
il est possible de quantifier à quel point un graphe est plus complexe qu’un arbre.
Un outil standard pour cela est la largeur arborescente, qui est profondément liée
à la théorie des mineurs. Nous abordons ici deux grands axes: d’un côté l’étude
des mineurs de graphes, et de l’autre, la recherche de structure arborescente dans
les graphes.

Définitions
Cette thèse porte sur la théorie structurelle des graphes, des objets théoriques
composés de sommets (représentés par des points) reliés ou non par des arêtes.
Lorsqu’une arête lie deux sommets, on dit qu’ils sont adjacents ou voisins. Un
graphe est connexe si pour tout couple de sommets, il y a un chemin (une suite
d’arêtes avec à chaque étape un sommet en commun) qui les relie. On mesure ici
la taille d’un graphe par son nombre de sommets.

On s’intéresse particulièrement aux relations entre les graphes. Un graphe H
est un sous-graphe induit d’un graphe G si on peut le construire à partir de G
en supprimant uniquement des sommets (et les arêtes qui n’ont plus leurs deux
extrémités). H est un sous-graphe de G si on autorise aussi la suppression d’arêtes
de G. Enfin, H est un mineur de G si on autorise en plus la contraction d’arêtes
(on fusionne les deux extrémités u et v d’une arête en un unique sommet, dont le
voisinage est l’ensemble des voisins de u et v). On dit aussi que G est un majeur
de H. Ces relations sont recapitulées sur la figure 1.

Une classe de graphes est un ensemble de graphes avec une caractéristique
commune. Cette caractéristique se traduit souvent sous la forme de l’exclusion
d’un graphe comme mineur ou sous-graphe.

Une classe de graphes très étudiée est celle des arbres (graphes connexes sans
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Figure 1: de gauche à droite, un graphe G, un sous-graphe induit, un sous-graphe
non induit, et un mineur qui n’est pas un sous-graphe de G.

cycles comme sous-graphe), car beaucoup de problèmes de graphe NP-complets
ont une solution linéaire en la taille du graphe lorsque celui-ci est un arbre. De ce
fait, trouver une structure arborescente dans un graphe peut permettre d’obtenir
des solutions efficaces pour ces problèmes.

Un majeur pour les gouverner tous

Un graphe est mineur-universel pour une classe de graphes s’il contient comme
mineur chaque graphe de la classe. Trouver un tel graphe permet en quelque sorte
de capturer des caractéristiques de toutes la classe en un unique graphe, plus facile
à manipuler. Notamment, un résultat célèbre de Robertson, Seymour et Thomas
en 1994 montre que la grille 2n × 2n est mineur-universelle pour la classe des
graphes planaires (graphes que l’on peut dessiner dans le plan sans croisement)
à n sommets [RST94]. Ce résultat a permis par la suite de borner la largeur
arborescente1 d’un graphe qui exclut un planaire quelconque comme mineur, en se
focalisant uniquement sur les graphes excluant une grille comme mineur.

Les dessins de graphes

Une façon d’affiner ce résultat est de trouver des sous-classes de graphes planaires
à n sommets qui admettent une grille mineure-universelle plus petite. On dit qu’un
graphe planaire G admet un dessin sur une grille s’il existe un plongement de G
sur une grille, tel que les sommets de G sont des sommets de la grille, et ses arêtes
sont des suites de segments dont les jonctions sont placées sur des sommets de la
grille. La taille d’un tel dessin est le nombre de sommets de la grille. L’idée est
d’établir une relation entre la taille d’un dessin d’un graphe H sur une grille, et

1paramètre qui quantifie une certaine complexité du graphe par rapport à un arbre

2 C. Hilaire



Résumé étendu en français

Figure 2: À gauche, un graphe planaire et son plongement sur la sphère (genre 0),
et un graphe non planaire plongeable sur le tore (genre 2). À droite, des exemples
de surfaces de genre croissant.

la taille de la plus petite grille qui admet H comme mineur, comme cela a été fait
par Dieng et Gavoille [DG20].

Les graphes de genre borné

Plutôt que d’affiner le résultat, une autre direction consiste à le généraliser à une
classe plus grande qui inclue les graphes planaires, telle que celle de graphes de
genre borné. En effet, un graphe est planaire s’il peut être dessiné sans croisement
dans le plan ou de façon équivalente sur une sphère. Un graphe est de genre g s’il
peut être dessiné sans croisement sur une surface ressemblant à une sphère avec g
trous.

Nous prouvons qu’il existe un graphe de genre g mineur-universel pour les
graphes à n sommets de genre g, et dont la taille est polynomiale en n et g. Le
résultat s’applique également aux surfaces non-orientables.

Les forêts cachées

Le deuxième chapitre se concentre sur la recherche d’une grande forêt (union
d’arbres) induite dans un graphe.

Un cas intéressant est celui où la forêt en question est un unique chemin.

Structure of graphs: minors and induced trees 3



Lorsqu’un graphe a un chemin induit de taille n, il a un chemin de taille n, mais
la réciproque n’est pas toujours vraie : c’est faux notamment lorsque le graphe a
un grand2 Kt,t comme sous-graphe. Une très vaste classe qui évite ce cas de figure
est la classe des graphes dits t-dégénérés. En 2017, Esperet, Lemoine et Maffray
ont conjecturé que tout graphe k-dégénéré avec un chemin à n sommets admet un
chemin induit à (log n)Ωk(1) sommets [ELM17].

Nous prouvons que c’est effectivement le cas pour plusieurs classes de graphes
dégénérés, dont une très grande, celle des graphes excluant un graphe comme
mineur topologique.

Dans le cas où c’est une forêt induite que l’on cherche, le théorème d’Erdős-
Pósa [EP65] stipule que si un graphe n’a pas k cycles disjoints, alors il admet
un ensemble de O(k log k) sommets dont l’élimination produit une forêt, appelé
feedback vertex set. Nous obtenons une propriété similaire pour les graphes sans
sous-graphe Kt,t et sans k cycles indépendants (disjoints et sans arête entre eux).
La contrepartie de cette généralisation est un feedback vertex set dont la taille est
logarithmique en la taille du graphe, et cette borne peut être atteinte.

2Kt, t: deux ensembles disjoints de t sommets chacun, avec toutes les arêtes possibles entre
eux et aucune à l’intérieur de chaque ensemble

4 C. Hilaire



Introduction

The results in this thesis all belong to the field of structural graph theory. Let us
start with the basics.

Graph theory for problem solving
Imagine you want to organize a gathering with as many of people as possible
among your colleagues: Alice, Bob, Caroline, Daniel, Ellen and Frank. However,
you know that there are some tensions between Alice and Bob, so you can not
invite them both at the party. You also heard that Daniel and Ellen had a fight,
and so on. A convenient way to represent the situation is with a schema as in
Fig. 3:

Figure 3: Schema representing conflictual relations between the colleagues (left)
and the graph modeling the situation (right), with blue vertices corresponding to
a maximum independent set.

To solve our problem, the only thing that matters is the pairwise relations
(in conflict or not in conflict) among your colleagues. The mathematical object
modeling this kind of relation within a given set is called a graph.

5



Graph theory for problem solving

A graph is described by a set of objects called vertices, here the set of colleagues
(using only their initial to simplify the notation), and a set of pair of vertices, called
edges, that represents a relation between the vertices. In our example that would
be the conflicts among your colleagues.

Basic vocabulary and notation

Let G be a graph. We denote by V (G) the set of vertices of G, in our exam-
ple that would be {a, b, c, d, e, f}, and by E(G) the set of edges (in the example
{(a, b), (a, c), (c, d), . . . }). The number of vertices in a graph is called its order and
is denoted |V (G)| or |G| as a shorthand. Two vertices are adjacent or neighbors if
they share an edge, and the set of neighbors of a vertex is called its neighborhood.
The number of edges incident to a vertex is called its degree, thus corresponds to
the size of its neighborhood. In our example, the vertex c has degree 3, and its
neighborhood is {a, d, e}.

A path in a graph is a sequence of edges which joins a sequence of pairwise
distinct vertices. In this example, c − a − b − d − e − f is a path. Observe that
this path covers all the vertices of the graph: we say that it is a Hamiltonian path.
A cycle is a path whose extremities are adjacent. In our example, a − b − d − c
is a cycle. If the cycle covers all the vertices, it is a Hamiltonian cycle, and a
graph containing a Hamiltonian cycle is called Hamiltonian. Observe that the
graph of the example is not Hamiltonian. A connected component in a graph is an
inclusion-maximal set of vertices such that we can go from a vertex to any other
using a path. A graph is said connected if it has only one connected component. A
set of vertices is separating if its removal results in a graph that is not connected.

Furthermore, a set of vertices such that there is no edge between any of them
is called an independent set. On the example in Figure 3, the graph is connected.
However, if we consider only the subset of vertices {a, d}, the set is not connected
and forms in fact an independent set. It is not a maximal independent set as we
can obtain a bigger one by adding f . The resulting independent set is not only
maximal but also maximum, as there is no bigger independent set.

In the literature, some graphs can be infinite, have an edge with twice the
same endpoint, multiple edges between the same pair of vertices, or directed edges
(Alice dislikes Bob, but Bob does not mind Alice). However, in this thesis, we do
not consider any such extension of the definition of a graph.

With this model of the situation, inviting as many colleagues as possible with-
out tensions is thus equivalent to finding an independent set of maximum size
in the graph representing the tensions among them. This problem, Maximum
Independent Set (MIS for short), is a very well-known and studied problem3.

3see https://en.wikipedia.org/wiki/Independent_set_(graph_theory).

6 C. Hilaire
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Introduction

Therefore, we moved from a very specific problem to a generic one with known
strategies. Notice that for this instance, we could easily find a solution by hand
(as represented in Fig. 3), but in general, we look for an algorithm that will work
in various situations and save time in the future. For example, you could be an
event planner and have to solve such problems in different contexts multiple times
a week.

Moreover, MIS models various problems, so investing time and energy in find-
ing a good strategy on this abstract model means that you obtain a good strategy
for a whole category of problems with no other common point than that they
correspond to maximising the size of a set of elements all pairwise “compatible”.
For example, in computer science, independent sets are useful for parallelizing
processes, as we can identify which pairs can run in parallel and which cannot.

MIS is an NP-complete problem in general, so it would be surprising to obtain
polynomial-time algorithms for it without further assumptions on the input graph.
Fortunately, in most real-life world problems, the input graph is not arbitrary but
satisfies some kind of structural properties.

Graph classes and containment relations

Graphs representing real-life situations are generally not completely chaotic, they
follow patterns of some type. Let us go back to our party-planning problem. Since
we organize it within a company, we can take into account its hierarchy: it could
be that people are hesitant to go to a party with their direct boss (let us assume
each person has exactly one direct boss). If there is no tension other than this one
(say the company is very recent), then the model of the situation is a very simple
graph, with no cycle, called a tree, as in Fig. 4.

A graph class or a family of graphs is a possibly infinite set of graphs. In most
cases, graph classes are defined with a property shared by all the graphs of tree.
The class of trees (or forests if the graph is not assumed to be connected: a forest
is a graph where every connected component is a tree), is a famous one as a lot of
difficult problems become easy to solve when considered within this class. This is
a general pattern: knowing some structural properties on the input graph can help
design more efficient algorithms to solve problems. Let us go back one final time
to our example. Instead of trying to solve MIS on an arbitrary graph (where the
problem is NP-complete), we focus now on solving it on a tree, where the problem
can be solved in linear time, using a simple induction.

Structure of graphs: minors and induced trees 7



Graph classes and containment relations

Figure 4: Hierarchy within the company (left) and the graph representing the
conflicts (right), with blue vertices for the MIS.

Relations between graphs

Trees are described as connected graphs with no cycle. A common way to define
a family of graphs is using a structure they contain or, more commonly, one that
they do not contain. What does it mean, then, for a graph to contain a structure
or not? In fact, there are several containment relations possible. Here are the four
common relations we will use in this thesis, each one a special case of the next (see
Fig. 5 for an example of each relation).

Figure 5: From left to right, a graph G, an induced subgraph of G that is not G, a
subgraph of G that is not induced, a topological minor of G that is not a subgraph
and a minor of G that is not topological.

• First of all, the induced subgraph. We say that H is an induced subgraph of
G if V (H) is a subset of V (G) and for each pair of vertices of H, they are
adjacent in H if and only if they are adjacent in G. In other words, we can

8 C. Hilaire



Introduction

construct H from G by deleting a (possibly empty) set of vertices (and the
edges incident to them).

• Then, if we relax the definition by allowing also deletion of edges, we say
that H is a subgraph of G.

• An edge-subdivision consists in adding a new vertex in the middle of an edge,
splitting the edge into two edges. The graph obtained by applying a (possibly
empty) sequence of edge-subdivisions to a graph is called a subdivision of the
initial graph. If G admits a subgraph isomorphic4 to a subdivision of H, we
say that H is a topological minor of G.

• Finally, an edge-contraction consists in merging the extremities of an edge
into a single vertex, whose neighborhood is the union of the neighborhood of
both extremities. If we can construct H from G by removing some vertices
and edges and contracting some edges, then we say that H is a minor of G.

A common way to define a class is with the substructures (in the form of
graphs) all the graphs of the class exclude. As we saw earlier, the class of trees can
be defined as the graphs that exclude every cycle as (induced) subgraph. Observe
that if we take a minor of a tree, we cannot create a cycle, so all the minors of a
tree are also trees. We say that the class is closed under taking minors.

If we lower the restriction and only forbid cycles of odd length, then we get
a larger class of graph: the bipartite graphs. A bipartite graph consist in two
independent sets with edges between them. This time, if we take a minor of a
bipartite graph, we could create an odd cycle, therefore the class is not closed
under taking minor. However, any subgraph of a bipartite graph is bipartite, so
this class is closed under taking subgraphs.

Let n1, n2 be two integers. The graph obtained by taking two sets of vertices,
one of size n1 and the other one of size n2, and adding all edges between the first
and the second is a complete bipartite graph, denoted Kn1,n2 . The class of complete
bipartite graphs is not closed under taking subgraphs, as removing any edge results
in a graph that is bipartite but not complete. However, it is closed under taking
induced subgraphs, or hereditary. A similar common hereditary graph class is that
of complete graphs, or cliques. The complete graph on n vertices, noted Kn, is the
graph with all possible edges. We can also define those two classes by forbidding
induced subgraphs (see Fig. 6).

Notice that for the last two classes, we described them with a finite number
of forbidden induced subgraphs whereas there are infinitely many cycles, one for
each size, to exclude for the trees. If we define the trees by excluding minors

4equal, up to renaming the vertices.

Structure of graphs: minors and induced trees 9
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Figure 6: A complete graph K6 and a bipartite complete graph K4,3, with the
forbidden induced subgraph.

instead of subgraphs, we reduce this set to a single one: the trees are the graphs
that do not contain a triangle as a minor. Indeed, note that any longer cycle
contains a triangle as a minor, and that there is no smaller cycle than a triangle.
The seminal Robertson-Seymour Theorem [RS04], whose proof spans over twenty
papers and two decades, states that every graph class closed under taking minors
can be defined by a finite set of forbidden minors. In fact, a lot of classical graph
classes are closed under taking minors and can thus be defined this way. Along
the way, they got a result related to a topic we will study in more details: minor-
universality.

Minor-universality

A graph is universal for a family of graphs if it contains all the graphs in the
family, for some containment relation (subgraph, induced subgraph, minor, . . . ).
Graph universality plays an important role in graph theory and graph algorithms,
as it allows us to manipulate a single graph instead of the whole family to deduce
properties. The goal is then to wisely choose the constraints of the universal graph
to represent the family. The first chapter of this thesis focuses on the notion of
minor-universality.

Let us take for example the family of trees on at most 6 vertices, as represented
in Fig. 7. We can obtain each one of them as a minor of the tree represented on the
left: this tree is minor-universal for the family of trees on at most 6 vertices. Even
if it has more than 6 vertices, this minor-universal graph is also a tree. In fact, it
is a smallest tree that is minor-universal for this family. Of course, we could have
taken a minor-universal graph that is not a tree, like the complete graph K6; It
has fewer vertices, but it does not really capture the properties of the family (here,
not having cycles).

10 C. Hilaire
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(a) Trees on 6 vertices.
(b) Minor-universal
tree.

(c) Construction
of T as a minor of
the universal tree
for this family.

Figure 7: A tree (7b) that contains every tree on at most n = 6 vertices (7a) as a
minor. Only the ones with exactly 6 vertices are represented, as the smaller ones
are minors of those ones. For example, Fig. 7c represent how to obtain T as a
minor of this universal tree, by removing the red vertex and contracting the edge
circled in blue.

In Chapter 1, we explore this question of minor-universal graph for families
of graphs closed under taking minors, such that the universal graph has similar
properties as the family. To avoid manipulating infinite families (and thus infinite
graphs), we parameterize by the number of vertices. Namely, we focus on the
graphs that have at most n vertices for some integer n, and observe how the size
of the universal graph increases as n increases. The graphs on which we study
minor-universality correspond to another common graph class: the planar graphs
and their generalizations.

Planar graphs

A graph is planar if it can be embedded on a plane surface such that no two
edges cross each other. When such embedding is given, we call it a plane graph. A
famous old puzzle, called the three utilities problem, relies on this notion. Suppose
we want to place and connect in a city three houses to three utilities: gas, water
and electricity. However, we want to connect them with paths that do not cross
each other. This is in fact an impossible puzzle. The situation can be represented
by K3,3, one set for the houses, one for the utilities, and this graph was proved not
planar. In fact, this graph and K5 (represented Fig. 8) are the smallest non-planar
graphs, up to taking minors. In other word, any non-planar graph contains one
of those two graphs as minor. The class of planar graphs is closed under taking
minors, and can be defined as the {K3,3, K5}-minor-free graphs.

Robertson, Seymour, and Thomas [RST94] found in 1984 a planar graph on
4n2 vertices that is minor-universal for all the planar graphs on at most n vertices.

Structure of graphs: minors and induced trees 11
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Figure 8: An example of planar graph (left) and the excluded minors K5, K3,3

(right).

There are two directions to refine this result: either by considering subfamilies of
planar graphs for which there is a smaller minor-universal graph, or by considering
a family that generalizes the notion of planarity. This generalization involves
bounding a new parameter of a graph: its genus.

Genus of a graph

Planar graphs are defined as graphs that can be embedded on a plane surface
(or equivalently on a sphere). Therefore the natural generalization is to consider
graphs that can be embedded on more complex surfaces. Here we will only consider
connected compact surfaces without boundary. The parameter to characterize the
complexity of a surface is the genus.

Figure 9: A ring (left) and a Möbius strip (right).

There are two types of surfaces, orientable and non-orientable surfaces. To
understand better this notion, take a strip and attach the extremities together
to form a ring (see Fig. 9): we can distinguish the interior and exterior of this
newly formed ring. Now, if we twist the band before joining the extremities, we
obtain a Möbius strip for which there is no distinction between interior and exterior
anymore. Notice that the boundary of a Möbius strip is a circle, up to deformation.
The surfaces (without boundaries) are there classified as follow:

12 C. Hilaire
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Theorem (Classification of surfaces). Every connected surface without boundary
is homeomorphic to either:

• An orientable surface of genus g ⩾ 0, obtained by gluing g handles on the
sphere. Its Euler characteristic is χ = 2− 2g.

• A non-orientable surface of genus g ⩾ 0, obtained by attaching g structures
called “crosscap” (corresponding to a Möbius strip) on the sphere. Its Euler
characteristic is χ = 2− g.

(a) A torus (oriented genus
1 and Euler genus 2).

(b) A double-torus (oriented genus
2 and Euler genus 4).

(c) A Klein bottle
(non-oriented genus 2
and Euler genus 2).

Figure 10: Examples of surfaces of small Euler genus.

When we consider the genus of a graph, it is sometimes more convenient to
consider its Euler genus, that encompasses both orientable and non-orientable
cases. Euler genus is the minimum integer g such that the graph can be em-
bedded on a non-orientable surface of genus g or on an orientable surface of
genus g/2. A graph G with a given embedding also has a Euler characteris-
tic: χ(G) = |V (G)| − |E(G)| + |F (G)| (where F (G) are the faces of G). This
Euler characteristic corresponds to that of a surface it can be embedded on, so
χ(G) = 2− g. The Euler genus is thus a parameter that measures the complexity
of a graph, and how far it is from being planar: when the genus is small, we expect
sometimes a behaviour similar to that of a planar graph.

Tree parameters
To study and exploit the properties of a graph class, instead of using a represen-
tative of the class, another strategy is to use other parameters, and mostly those

Structure of graphs: minors and induced trees 13
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that measure their resemblance to trees. Indeed, as we saw earlier, most problems
have an easy algorithmic solution on trees. When we consider graphs that resem-
ble to trees (whatever that means exactly), we would like to adapt the solution on
trees into a solution on those graphs. So, how do we properly define this notion of
proximity to being a tree?

Feedback vertex set

A first solution is to try to consider a graph as a forest with some additional “bad”
vertices. A feedback vertex set (FVS) of a graph is a set of vertices whose removal
results in an induced forest. The intuition is that whenever the FVS of a graph
is small, you can apply an algorithm adapted for trees on most of the graph (the
induced forest), then correct the result to take into account the small set of vertices
that have been put aside (The FVS). In fact, the size of a smallest FVS is closely
related to the number of disjoint cycles in the graph: Erdős-Pósa therorem [EP65]
states that if a graph contains fewer than k pairwise vertex-disjoint cycles, then it
has a FVS of size O(k log k).

The size of a smallest FVS is a good parameter to measure the likeness to a
tree, but it is rather restrictive. We will see later graphs with a big FVS that
behave similarly to a tree, pointing to a need for an other parameter.

Chordal graphs

Figure 11: Example of a 2-tree, and a tree representation where every K3 is rep-
resented by a vertex.

A k-tree, for some integer k ⩾ 1 is graph that can be constructed as follow:
start from the complete graph on k + 1 vertices, and recursively add each other

14 C. Hilaire
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vertex by connecting it to a clique on k vertices of the current graph. Notice that
a tree is a 1-tree. A clique tree can this be seen a collection of Kk+1 organized in
a shape of a tree. Fig. 11 gives side-by-side a 2 − tree and the tree organization
of the K3s. Intuitively, a k-tree is a tree that is more or less thick, its thickness
depending on k. Observe that a k-tree can have a lot of disjoint cycles (thus no
small FVS) even if k is small (and thus have a structure close to that of a tree).

More generally, if we allow the cliques to be of different size, the graph obtained
is a chordal graph. The clique number of a graph is the size of a biggest clique. A k-
tree is thus a special case of chordal graph, where all the cliques of the construction
have size k+1. This class is also defined as the class of graphs with no cycle of at
least 4 vertices as induced subgraph.

Moreover, a chordal graph such that the cliques are organized into a path are
called interval graphs.

Treewidth

If we consider an arbitrary graph, it can always be completed into a chordal graph
by adding some edges: we can for example add all the possible edges to obtain a
complete graph, which is chordal. Now, among all the possible completions, we
select one that minimizes the clique number of the resulting chordal graph, say it
is k. Then we say that the graph has treewidth k − 1. In other words, a graph
has treewidth k if it can be complemented into a chordal graph of clique number
k + 1 and not in a chordal graph of clique number k. Roughly speaking, a graph
of treewidth k can be seen as a subgraph of a k-tree, which has an underlying tree
structure. In fact, as we will see more precisely in the thesis, whenever a graph
has treewidth k, it admits a decomposition, called a tree decomposition, into a tree
such that each vertex of the tree represents a bag of size k + 1 (corresponding to
cliques in the chordal completion).

Similarly, if a graph can be completed into an interval graph of clique number
k + 1 and not into an interval graph of clique number k, then we say that the
graph has pathwidth k.

The treewidth, and the tree decomposition associated to it, are the most com-
mon tools to generalize algorithms on trees to other graphs. It is NP-complete to
find the treewidth of a graph but there is a linear algorithm to check if a graph has
treewidth k for a fixed k. Moreover the size of a smallest FVS is an upper bound
of the treewidth, so bounding the size of a smallest FVS results in bounding the
treewidth of a graph.

A seminal metatheorem using treewidth to bound the complexity of a problem
is Courcelle’s theorem [Cou90]. It states that every decision problem on graphs
that can be expressed in monadic second-order logic (a logic defined on the vertex
set of a graph, with the adjacency relation, and for which the quantifiers are
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restricted to sets of vertices only) can be solved in linear time. For example, MIS
can be expressed in monadic second-order logic, and thus can be solved in linear
time on graphs of bounded treewidth.

Results and organization of the thesis
The results of this thesis are distributed in two chapters, each starting with an
introduction more specific to the subject of the chapter.

In Chapter 1, we focus on minor-universality. Recall that this is motivated
by the fact that there is a planar graph on O(n2) vertices minor-universal for the
planar graphs on at most n vertices. We first discuss the problem of finding a
smaller minor-universal graph for planar graphs and subclasses of planar graphs.
Then, we extend this theorem to more general graph classes: the graphs of bounded
Euler genus.

Then, in Chapter 2, we present our result related to tree structure in graphs
and more precisely to induced forest in graphs. The first part of this chapter fo-
cuses on a conjecture of Esperet, Lemoine, and Maffray stating that k-degenerate5

graphs with a path of size n as subgraph also have a path of size (log n)Ω(1) as
induced subgraph. We prove this to be true for graphs with bounded treewidth
and generalize this to the class of graphs excluding any fixed graph as topological
minor. In the second part of this chapter, we generalize the Erdős-Pósa Theorem,
and showed that sparse graphs with a small number of cycles that are pairwise not
connected have an FVS whose size is logarithmic in the number of vertices, which
is sharp.

Finally, in Chapter 3 we conclude by recapitulating our results, as well as those
that are not presented in this manuscript ([BCH+23, DHK+21]). We then present
some questions that arise from our work and that could be interesting to pursue.

5a graph is k-degenerate if every subgraph (including the graph itself) admits a vertex of
degree at most k.
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1.1 Introduction
A graph is universal for a family of graphs if it contains all the graphs in the family,
for some containment relation (subgraph, induced subgraph, minor, . . . ). Graph
universality plays an important role in graph theory and graph algorithms. Rather
than considering individually each graph of a given family, it is sometimes simpler
to manipulate a reduced set of graphs, or even a single graph, whose properties are
close enough from those of the graphs of the family. Universal graphs are studied
for families of finite and infinite graphs. In this chapter, we focus on families of
finite graphs. These families can also be infinite, so, for convenience, we restrict
them to the graphs of the family with at most n vertices for some integer n, and
observe how the size of the universal graph increases when n increases.

If we consider the relation of subgraph, a trivial example would be that the
complete graph on n vertices Kn is the subgraph-universal graph with the fewest
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1.1. Introduction

vertices for the family of all n-vertex graphs, since every graph on at most n vertices
is a subgraph of Kn. This result, optimal for any subfamily of n-vertex graphs,
does not grasp many properties of the family. In that sense, minimizing the number
of vertices of a subgraph-universal graph is not particularly insightful. However,
subgraph-universality has been well-studied, with more relevant constraints on the
desired universal graph.

For instance, the Strong Product Theorem [DJM+20], which states that every
planar graph is a subgraph of the strong product1 of a path and a graph of bounded
treewidth, has provided many new insights in planar graph theory.

Thanks to this theorem, it suffices to study such a product to derive properties
on all planar graphs. This includes a proof for bounding a useful parameter called
the queue number and a variant of chromatic number for planar graphs [DEJ+20].
This construction also led to the construction of a subgraph-universal graph for
planar n-vertex graphs minimizing the number of edges. Indeed, Esperet, Joret
and Morin [EJM22] constructed such a universal graph with (1 + o(1))n vertices
and n1+o(1) edges, whereas the best previous bound on the number of edges, from
Babai, Chung, Erdös, Graham and Spencer in 1982, was O(n3/2) [BCE+82].

Graph universality is also widely studied for the relation of induced subgraph,
especially for classes closed under taking subgraph, called hereditary. Indeed, since
the universal graph contains all the graphs of the class as induced subgraphs, it also
contains their induced subgraphs, so it makes sense to consider a class that includes
them. This interest for those universal graphs stems from the equivalence between
finding a smallest induced-subgraph-universal graph of a given family and finding
an optimal adjacency labelling scheme for that family. An adjacency labelling
scheme for a family of n-vertex graphs Fn is the combination of an encoding and
a decoding functions, depending only on the family. The former affects some bits
of data, called a label, to each vertex, and the latter assesses the adjacency of
two vertices thanks to the information contained in their labels only. The quality
of the labelling scheme is measured by the maximum number of bits used for a
label. The universal graph of Fn corresponding to a labelling scheme of Fn is
the graph with a vertex for each possible label and whose adjacency respects the
labels. The reverse construction is also possible, and the size of the labels in
the labelling scheme is the logarithm of the order of the corresponding universal
graph. Finding a labelling scheme of Fn with small labels, or equivalently finding a
smallest induced-subgraph-universal graph, gives a compressed description of the
graphs of Fn.

Observe that since a labelling scheme of Fn has to differentiate all the graphs

1The strong product of two graphs G,H is a way of combining them into a single graph, whose
vertex set is the Cartesian product of V (G)× V (H), and (u, v), (u′, v′) are adjacent if and only
if u, u′ are either equal or adjacent in G and v, v′ are either equal or adjacent in H.

20 C. Hilaire



Contents

of the family, the labels have to contain at least log |Fn|
n

bits, where |Fn| is the num-
ber of distinct graphs, up to isomorphism, in Fn. In other words, any universal
graph of Fn has at least 2

log |Fn|
n vertices. This bound is tight for dense families,

i.e. containing at least 2Ω(n2) graphs, as Bonamy, Esperet, Groenland and Scott
proved that there is always such universal graph on 2

log |Fn|
n

+o(n) vertices [BEGS21].
However, and contrary to the Implicit Representation Conjecture, this is surpris-
ingly not always the case for sparse families, as Hatami and Hatami exhibited in
2021 [HH22] a family of graphs a most 2n logn graphs such that every universal
graph has at least 2n

Ω(1) vertices.
Recently, Dujmović et al.[DEG+20] proved that there is a universal graph for

planar n-vertex graphs on n1+o(1) vertices. They generalised their construction to
other families including the graphs of bounded genus. Interestingly, this result was
also obtained using the characterisation of the Strong Product Theorem, and was
completely out of reach without it.

1.1.1 Minor-universality

This chapter focuses on minor-universality, i.e. finding universal graphs for the
minor relation. When H is a minor of G, it is sometimes convenient here to
consider the reverse relation and say that G is a major of H. Then, a graph is
minor-universal for a family if it is a major of every graph of this family.

Observe that Kn is a major of every n-vertex graph, so finding a smallest
(number of vertices) minor-universal graph for a family of finite graphs does not
give much information on the graphs of the family. However, we can set some
constraints for the universal graph to capture more information. For example,
Bodini proved that the smallest minor-universal tree for n-vertex trees has between
Ω(n log n) and O(n1.985) vertices [Bod02]. In this result, the minor-universal graph
is required to be itself a tree.

Figure 1.1: (2n−3)-vertex caterpillar (left) minor-universal for the n-vertex cater-
pillars (right), with n = 6.
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A simpler example is considering the family of caterpillars on at most n vertices.
A caterpillar is a tree whose internal2 vertices form a path. In fact we can focus
on those on exactly n vertices as the smaller ones are minors of them. Observe
that a caterpillar minor-universal for the caterpillars has to have at least n − 1
leaves to contain the star as minor, and at least n− 2 non-leaf vertices to contain
the n-path as minor. Both these lower bounds can be reached and the caterpillar
on 2n− 3 vertices presented in Fig. 1.1 is minor-universal for the n-caterpillars, as
one can easily check that every n-caterpillar is a minor of this caterpillar.

If we consider the family of planar n-vertex graphs, we saw previously that
the Strong Product Theorem gives a subgraph-universal graph, which is also a
minor-universal graph for this family. However, this universal graph is far from
being planar as its genus is unbounded. If we require the minor-universal graph to
be itself planar, there is a fundamental result, related to the celebrate Excluded
Grid Theorem of Robertson and Seymour [RS86]. The Excluded Grid Theorem
states that the graphs excluding as minor a given planar n-vertex graph have
their treewidth bounded by a function of n. This theorem is a part of their
seminal work on Graph Minor Theory to characterise minor-closed families by a
finite set of forbidden minors. It implies a deep connection between Graph Minor
Theory, a branch of Structural Graph Theory, and the treewidth of a graph, which
is a parameter that has many algorithmic applications (see Chapter 2 that is
more focused on tree structures and treewidth). The bound on the treewidth of
a graph G excluding a planar n-vertex graph is enormous, and in a later paper,
Robertson, Seymour and Thomas [RST94] give a better bound, using in particular
the following theorem:

Theorem 1.1.1 ([RST94, Theorem 1.5]). Every planar n-vertex graph is a minor
of the 2n× 2n-grid 3.

In other words, there is a 4n2-vertex planar graph minor-universal for the planar
n-vertex graphs. Notice that if a graph excludes a fixed planar n-vertex graph as
a minor, then in particular it excludes the 2n× 2n-grid as a minor. This radically
simplifies the search for a bound on the treewidth of those graphs: any bound for
graphs excluding the 2n× 2n-grid as a minor directly applies to graphs excluding
any given n-vertex planar graph.

There are two directions to refine this result: either by considering subfamilies
of planar n-vertex graphs for which there is a smaller minor-universal graph, or by
considering a family that generalizes the notion of planarity. The next subsection
explores the former direction. For the latter direction, a natural family to consider

2In a tree, a leaf is a vertex of degree 1, the other vertices are called internal vertices.
3The w × h-grid is the plane graph on w · h vertices of the form (i, j) for 1 ⩽ i ⩽ w and

1 ⩽ j ⩽ h, where (i, j) is adjacent to (i, j + 1) and (i+ 1, j).
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when generalizing the family of planar graphs is the family of graphs with bounded
genus. With Cyril Gavoille [GH23b], we generalize Theorem 1.1.1 to those graphs
as follows:

Theorem 1.1.2. For every n and every surface Σ of Euler genus g, there is a
graph Un,Σ embedded on Σ with O(g2(n + g)2) vertices that contains as minor
every graph embeddable on Σ with n vertices.

In other words, Un,Σ is a minor-universal graph for n-vertex graphs embeddable
on Σ. In fact, as we will see in Theorem 1.3.2, the graph Un,Σ depends only on
the Euler genus and orientability of Σ. Moreover, the embedding of the minor is
preserved in Un,Σ.

Our proof is constructive. The minor-universal Un,Σ, as well as the witness of
the minor in Un,Σ, can be constructed in polynomial time. Our construction is
inspired by the construction for planar graphs, and interestingly, along the way,
we give an alternative and constructive proof for the non-constructive part of the
proof of Theorem 1.1.1.

1.1.2 Grid-drawing and grid-major

Among subfamilies of planar n-vertex graphs, we focus on graphs with a certain
property on their planar embedding. We know from Theorem 1.1.1 that those
planar graphs are minor of a grid of area (number of vertices) 4n2, and we wonder
what other property enables us to reduce this area.

A poly-line grid-drawing of a graph is a special planar embedding where ver-
tices have integral coordinates and edges are poly-line segments such that two
consecutive segments of an edge meet in what we call a bend that has integral
coordinates as well (see Fig. 1.2 for an example of poly-line drawing). These em-
beddings can be seen as a planar embedding on a grid where vertices and edge
bends are mapped to vertices of the grid. Several types of drawings of a graph on
a grid are studied (like straight-line if there are no edge bends, orthogonal if each
edge is a path of the grid, and so on) but unless specified otherwise, we will refer
to a poly-line grid-drawing when we consider a grid-drawing.

Links between graph drawing and graph minor theory are far from new. For
instance, pathwidth and height (i.e., the number of rows) of the drawing are two
well-known parameters that are linked: the pathwidth of the graph is a lower bound
on the height in any grid-drawing [Sud03] (including poly-line one), whereas there
are known grid-drawings for outerplanar graphs achieving the pathwidth, up to
some constant factor (combining [Bie12] and [BBCR14]). As noticed by [BCE+19],
the pathwidth is also a lower-bound for the height of any grid-major of the graph.

Moreover, when H is a minor of a graph G, we can define a model of H in
G, that is a set of pairwise disjoint connected subgraphs of G, each one called
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Figure 1.2: A poly-line grid-drawing (left) and a minor-drawing (right) of a graph
formed by 4 nested triangles, on an 8× 8-grid.

super-node in a one-to-one correspondence with V (H), and a subset of edges of
G, each one called super-edge in one-to-one correspondence with E(H), such that
(u, v) ∈ E(H) if and only if there exists a super-edge connecting a vertex of the
super-node of u and a vertex of the super-node of v. In the case of a graph H
minor of a grid, we can view a model of H as a planar embedding on the grid
where vertices are mapped on connected subgraphs of the grid and and edges are
mapped on edges of the grid. This defines another kind of grid-drawing, that we
call a minor-drawing on a grid.

It is well-known that any planar graph G with n vertices has a poly-line drawing
of area O(n2). However, the quadratic area is required because of the nested-
triangles (see Fig. 1.2) graph among other worst-case examples [dFPP88, Bie11].
Notice that, for this nested-triangles graph, the smallest grid-major also has area
Ω(n2) [BCE+19, Lemma 5]. The same authors showed an example of a graph,
a ladder with a universal vertex inspired from [Bie11], that is minor of a grid of
area n and for which any grid-drawing required an area of Ω(n2). We observe
that, in both contexts, some planar graphs may require quadratic-area grids, for
drawing or for major (like the nested triangles graph), whereas no graphs with
simultaneously small area grid-drawing and large grid-major are known.

Recently, Dieng and Gavoille [DG20] raised the question of whether any graph
having a grid-drawing of area A has a grid-major of area O(A). They show an
upper bound of O(A3/2) on the grid-major area. More precisely, they show that
every graph having a poly-line w×h-grid-drawing is minor of a O(wh2) area grid,
leaving open whether we can hope for a grid of approximately the same area, i.e.
O(wh).
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Our results. Working on this problem with Cyril Gavoille, we first show that
the decisional problem associated to finding the smallest grid-major of a planar
graph, even knowing an optimal grid-drawing of the graph, is NP-complete. This
contrasts with the variants where only the height (of the drawing or of the grid-
major) has to be minimized. From [BCE+19], the complexity status of the “height”
versions are open. However, an existential FPT algorithm in the height for the
minimum height grid-major problem can be derived from Courcelle’s Theorem
(see [BCE+19]).

We then consider in particular the family of k-outerplanar graphs, which are
plane graphs where the vertices are partitioned into k layers, which can be con-
structed by successively peeling all the vertices lying on the outerface. We show
that k-outerplanar graphs have a grid-major of area O(kn), and that this bound is
the best possible. This improves upon the O(n log n) upper-bound for 1-outerplanar
graphs of [DG20].

Finally we consider the reverse question, that is finding a poly-line grid-drawing
of a graph when given its model as a minor of a grid. We show that if a graph
of max degree ∆ is a minor of a w × h-grid, then it has a δw × δh poly-line
drawing, where δ = max(1,

⌊
∆
2

⌋
). This implies in particular that for a family of

planar graphs of constant degree, if we have a lower bound on the area of their
grid-drawing, then we we have, up to a constant, the same lower bound on the
area of a minor-universal grid.

1.2 Universal grid for grid-drawings

1.2.1 Overview

The objective of this section is to establish relationships between the area of a
smallest grid-major of planar graph and the properties of its other embeddings.

We start in Section 1.2.2 with the necessaries definitions and preliminaries. We
remark in Proposition 1.2.2 that, given any integer ∆ ⩾ 3, it takes a linear time to
compute from G a maximum-degree-∆ major G′ of G with the minimum number
of vertices.

In contrast, we show in Section 1.2.3 that computing a grid-major (which is
a graph of bounded maximum degree) of a graph with smallest possible area is
NP-Hard, even if the optimal grid-drawing of the graph is given as input.

In Section 1.2.4, we show that k-outerplanar graphs have a grid-major of area
O(kn), which is sharp and improves the O(n log n) upper-bound of [DG20] for
k = 1.

Finally, in Section 1.2.5, we consider the question of constructing grid-drawings
from minor-drawings with similar area, and this in order to deduce lower bounds
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on the smallest grid-major of a graph.

1.2.2 Definitions and preliminaries

Grid-drawings

Recall that a grid-drawing can be seen as a (planar) grid embedding where vertices
and edge bends are mapped to vertices of the grid (often refer here as grid-point to
avoid confusion with the vertices of the embedded graph). The drawing is straight-
line if there are no edge bends, it is poly-line otherwise. It is orthogonal if each
edge is a path of the grid. Only planar graphs of maximum degree at most four
can have orthogonal drawings, which are special poly-line drawings.

Consider a poly-line drawing Γ of a given plane graph G. We say that Γ
preserves the embedding if we have an embedding homeomorphic to the one of
G. Most grid-drawing algorithms preserve the embedding, for instance by first
triangulating the input embedded graph.

Minor-drawings

A minor-drawing4 of a graph H is a drawing of an H-model in some grid-major of
H. Therefore, in this kind of drawing, vertices of H are pairwise disjoint connected
subgraphs of the grid (the super-nodes), and edges of H are edges of the grid
(the super-edges). (See Fig. 1.3 for an example.) To “simplify” our drawings,
we will allow super-edges to be internally disjoint grid paths (and not only grid-
edges). It is straightforward to check that both definition leads to drawings of same
area. Moreover, the second definition (so allowing path-grid edges) generalizes
orthogonal drawings. Hence, every graph that has an orthogonal drawing of area
A, has a minor-drawing of area at most A.

In order to define the embedding preserving property of a minor-drawing, we
need to associate with each super-node a region. More precisely, the region of a
super-node X is the region of the plane composed of all the vertices and edges in
X and of all faces of the grid that are bounded by four edges of X. Note that
the region of a super-node may be not homeomorphic to a disc: it may contain
“holes” making the region not contractible to a single point without crossing other
super-edges and/or super-nodes of the H-model. It is however easy to see that
every super-node X having a region with some “holes” can be transformed into
a new super-node X ′ with V (X ′) = V (X) whose region has no holes and that
remains an H-model5. A minor-drawing is simple if all super-node regions are

4The terminology in [BCE+19] is “grid-representation” but this is the same idea.
5One can remove each hole of the region of X by deleting from X a shortest path in the dual

of the grid limited to edges of X from inside to outside the region of X. Deleting such a path
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Figure 1.3: A dense drawing on a w × h grid for a planar graph with w = 4 and
h = 5, and minor-drawing on a (3w − 2)× h grid of the same graph and with the
same embedding.

homeomorphic to a disc.
Consider a plane graph H. We say that the minor-drawing Γ preserves the

embedding of H if after contracting every super-node to a single point we obtain
an embedding that is homeomorphic to the embedding of H. Only simple minor-
drawings can preserve the embedding.

Basic properties

We first present two properties.

Proposition 1.2.1. If H has a grid-major of area A, then every planar graph
excluding H as minor has treewidth at most 9⌊

√
3A⌋/2− 4 ≈ 7.8

√
A.

Proof. Using [GT12, Theorem 1.4, pp. 419], [DG20] showed that every planar
graph excluding an r×r grid as minor has treewidth at most 9r/2−4. From [Lei80,
Theorem 2], we can derive that every grid of area A is minor of a square grid of
area at most 3A, i.e., a r×r grid with r2 ⩽ 3A. We conclude by setting r = ⌊

√
3A⌋

that is the largest integer such that r2 ⩽ 3A.

Proposition 1.2.2. If G′ is a maximum-degree-∆ major with ∆ ⩾ 3 of a graph
G, then the minimum number n′ of vertices for G′ is

n′ =
∑

u∈V (G)

max {1, f∆(deg(u))} =
∆∑

d=0

nd +
∑
d>∆

nd · f∆(d)

where f∆(d) = ⌈(d− 2)/(∆− 2)⌉ and nd denotes the number of vertices of degree
d in G. Such a major G′ can be obtained in linear time from G by expanding every
vertex of degree d > ∆ by a path of f∆(d) vertices.
will remove edges of X and will remove a hole from its region while preserving X connected.
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Proof. By definition, to each vertex u of G corresponds a super-node Xu in G′. To
prove the claim, it is sufficient to show that |Xu| ⩾ (deg(u)−2)/(∆−2) whenever
deg(u) > ∆. Indeed, for deg(u) ⩽ ∆, then |Xu| = 1 is enough and sufficient,
and for deg(u) > ∆, |Xu| ⩾ (deg(u) − 2)/(∆ − 2) implies |Xu| ⩾ f∆(deg(u)).
Furthermore, we check that to a path of f∆(deg(u)) vertices we can connect up
to deg(u) vertices outside of the path. Additionally, we check that we can do so
without exceeding the degree bound of ∆, thus obtaining |Xu| ⩽ f∆(deg(u)).

So, let us show that |Xu| ⩾ (deg(u)−2)/(∆−2) for deg(u) > ∆. Given a graph
H and X ⊆ V (H), we denote by NH(X) = {(u, v) ∈ E(H) : u ∈ X and v /∈ X}
the open neighborhood of X, i.e., the set of neighbors of X not in X. We said
that X is connected if the induced subgraph H[X] is connected. Let ∆(H) denote
the maximum degree of H. For every integer x ⩾ 1, denote by

η(x) = max
∀H,∆(H)⩽∆

∀X⊆V (H), |X|=x

X connected

|NH(X)|

the maximum number of neighbors that can have a connected subset of x vertices
in a graph of maximum degree ∆.

Let us show that

η(x− 1) ⩾ η(x)−∆+ 2, for every x ⩾ 2. (1.1)

To show this, consider a connected subset X and a graph H realizing the
optimal bound η(|X|) with |X| = x ⩾ 2. Consider a rooted spanning tree of
X, and let v be a leaf in this tree, and let w be its parent. Such vertices exist
since X is connected and has x ⩾ 2 vertices. Now, consider Y = X \ {v}. Y is
connected since v is a leaf. The number of neighbors of Y in H \ Y is at least
|NH(X)| − (degH(v) − 1) + 1, obtained from all the neighbors of NH(X) minus
at most the degH(v) − 1 neighbors of v (the neighbor w of v cannot be removed
since it is in Y ) and plus v which is not anymore in Y . We have therefore showed
that |NH(Y )| ⩾ |NH(X)| − degH(v) + 2. Note that |NH(Y )| gives a lower bound
on η(|Y |) = η(|X| − 1) = η(x − 1). Therefore, η(x − 1) ⩾ η(x) −∆ + 2 because
|NH(X)| = η(|X|) = η(x) and degH(v) ⩽ ∆(H) ⩽ ∆, and Eq. (1.1) is proved.

Clearly, η(1) = ∆. From Eq. (1.1), it follows that

η(x) ⩽ η(x− 1) +∆− 2

⩽ η(x− i) + i · (∆− 2)

⩽ η(1) + (x− 1) · (∆− 2)

⩽ (∆− 2) · x+ 2 . (1.2)

Let us come back with vertex u and its super-node Xu in G′. Obviously,
we need Xu connected and |NG′(Xu)| ⩾ deg(u). Since ∆(G′) ⩽ ∆, we must
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have |NG′(Xu)| ⩽ η(|Xu|). Combining with Eq. (1.2), it follows that deg(u) ⩽
(∆ − 2) · |Xu| + 2, or equivalently |Xu| ⩾ (deg(u) − 2)/(∆ − 2), as desired. This
completes the proof of Proposition 1.2.2.

1.2.3 NP-Completeness for grid-major problems

We consider two variants of the Grid-Major Problem.
The Grid-Major Problem for a graph is, given a planar graph H and an

integer A, to decide whether there is a grid of area at most A containing H as
minor.

The Grid-Major Problem for a drawing is, given the optimal poly-line
drawing Γ of a planar graph H and an integer A, to decide whether there is a grid
of area at most A containing H as minor.

Theorem 1.2.3. The Grid-Major Problem for a graph and for a drawing are
both NP-complete.

In fact, the problems remain NP-complete even if the input graph is a for-
est of maximum degree four, and, for the drawing variants, even if the input
drawing has optimal area. The proof of this theorem is an adaptation of the NP-
completeness proof of the Forest Layout Problem, by Dolev, Leighton, and
Trickey in [DLT94], as reviewed in the next paragraph.

Sketch of the proof for Forest Layout Problem

Lemma 1.2.4 ([DLT94, Theorem 7]). Given a forest and an integer A, deciding
whether the forest has an orthogonal drawing with area at most A, i.e., the Forest
Layout Problem, is NP-complete.

As many subsequent NP-completeness results in graph drawings, their proof
is a reduction from the 3-Partition Problem. For this latter problem, we are
given two integers B,m and a set of integers X = {x1, . . . , x3m} summing to
mB and with B/4 < xi < B/2. We ask whether X can be partitioned into m
disjoint sets each summing to B. This problem is strongly NP-complete, i.e., even
if integers B and m are encoded in unary.

The reduction is the following: given an instance of the 3-Partition Prob-
lem, construct a forest F such that for each xi ∈ X, there is a path pi on xi

vertices. Suppose that m = 2n (if m is odd, then n = ⌈m/2⌉ and we add a path
on m vertices to the forest), and let A = (4n + 3) × (2B + 3). Add to this forest
a frame tree Tf , which is a tree of (2B + 3) · (4n + 3) − 2nB vertices, such as
represented in Fig. 1.4a.
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2n holes of B points

(a) Orthogonal drawing of the
frame tree Tf ,

(b) Rest of
the forest,

(c) Orthogonal drawing of F (solu-
tion of the forest layout problem on
this instance),

Figure 1.4: The forest F for n = 4, B = 7, and a (4n+ 3)× (2B + 3)-grid.

The Fig. 1.4 represents the instance of the forest layout problem associated to
the 3-Partition Problem with B = 7,m = 6 = 2n and x1 = · · · = x6 = 3,
x7 = · · · = x18 = 2.

It is proved in [DLT94] that the 3-Partition Problem instance has a solution
if and only if F has an orthogonal drawing on a grid of area A. They proved that
the only orthogonal drawing of Tf on the grid is the one represented in the Fig. 1.4a,
leaving m = 2n holes of B points, which implies that in order to draw F , it is
necessary to distribute the paths in those holes, like in Fig. 1.4c.

NP-completeness of the Grid-Major Problem

The same reduction from 3-Partition Problem can be done for the Grid-
Major Problem, because in the situation presented, orthogonal drawing and
minor-drawing are the same. In fact, for the graph version, it can be directly
reduced from Forest Layout Problem.

Claim 1.2.5. Let H be a simple planar graph with ∆(H) ⩽ 4, then a minor-
drawing of H on a grid of area |V (H)|, if it exists, is equivalent to an orthogonal
drawing of area |V (H)|.

Proof. Let H be a planar graph on n vertices with degree ⩽ 4.
Suppose that there is a minor-drawing Γ of H with area N = |V (H)|. Then

there are N distinct super-nodes and N grid-points thus each super-nodes contains
exactly 1 grid-point, and (by definition of a minor-drawing) every edge of H is a
path in the grid. Therefore Γ is an orthogonal drawing of H.
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As we saw in Section 1.2.2, an orthogonal drawing can be seen as a special case
of minor-drawing, so the reverse is trivial.

Figure 1.5: Optimal poly-line drawing of F (for n = 4 and B = 7) on a (4n+3)×
(2B + 3)-grid.

Therefore, Grid-Major Problem for a forest F with ∆ ⩽ 4 and with A =
|V (F )| is equivalent by Claim 1.2.5 to Forest Layout Problem with the same
inputs, which is NP-complete. In order to prove that Grid-Major Problem
for drawing is NP-complete, we can do the a similar reduction from 3-Partition
Problem.

Given an instance of the 3-Partition Problem, construct the exact same
forest F and area A (with the same notation) as in Section 1.2.3. Take the following
straight-line (thus poly-line) drawing Γ of F , represented on Fig. 1.5: the frame
tree Tf is drawn almost the same way as in the Fig. 1.4a, but the vertical branches
are pushed on the sides, leaving in the middle two empty n× B subgrids (drawn
in gray in the figure), and all the paths of F are drawn in those subgrids. This
drawing is optimal since |V (F )| = A.

Solving Grid-Major Problem for a drawing with input Γ and A, is deciding
if there is a minor-drawing of F of area A. Since F has A vertices, by Claim 1.2.5,
finding a minor-drawing of F on a grid of area A is equivalent to finding an
orthogonal drawing of F , which is itself equivalent to finding a solution to the
3-Partition Problem. Thus the Grid-Major Problem for a drawing is also
NP-complete.
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1.2.4 Outerplanar graphs

In this section we show that n-vertex k-outerplanar graphs have O(kn) grid-major
area, which improves the previous O(n log n) upper bound for k = 1 [DG20]. This
is complemented by an Ω(kn) lower bound.

Recall that a planar graph is k-outerplanar if it has a plane embedding where
the vertices partition into k layers, obtained by successively peeling all the vertices
lying on the outerface. If the embedding is given, we call it a k-outerplane graph.
Outerplanar graphs are 1-outerplanar graphs.

By expanding along each layer each vertex of degree d > 4 by a path of f4(d) =
⌈(d− 2)/2⌉ vertices on which we attach the d neighbors in a balanced way as
in Proposition 1.2.2, we can show that (see also [Bod98, Lemma 82] for a non-
quantitative variant6 and [DK99, Lemma 3] for infinite planar graphs):

Proposition 1.2.6. Every k-outerplane graph H with n ⩾ 4 vertices is a minor of
a k-outerplane graph G of maximum degree four, with O(n) vertices, and preserving
the embedding of H. Such a major G can be constructed in O(n) time.

From previous propositions, we can derive an upper bound for grid-major area
of k-outerplanar graphs, as follows.

Consider a k-outerplane graph H with n vertices. Apply first Proposition 1.2.6
to obtain a new k-outerplane graph H ′ with O(n) vertices and maximum degree
four. Then, apply the orthogonal drawing of [DLT94] to obtain an orthogonal
drawing of H ′ of area O(k|V (H ′)|) = O(kn) while preserving the embedding of
H ′. As seen in Section 1.2.2, it is easy to check that any orthogonal drawing
actually a minor-drawing of same area. Thus, H ′ has a minor-drawing of same
area. It follows that H is a minor of a grid of area O(kn). We remark that
all the steps take polynomial time, and so a minor-drawing of such area can be
constructed in polynomial time and preserve the initial embedding of H.

To summarize:

Corollary 1.2.7. Every n-vertex k-outerplanar graph has a grid-major of area
O(kn). Moreover, a minor-drawing of the graph into such a grid and preserving
the embedding can be constructed in polynomial time.

The bound of Corollary 1.2.7 is tight thanks to the next Proposition 1.2.8.

Proposition 1.2.8. For every k ⩾ 1, there exists a k-outerplanar graph with at
most n vertices such that every grid-major has area Ω(kn).

Proof. Consider a minor-drawing of a graph: the sugbraph induced by all the
grid-points of the grid that are either in a super-node or in a super-edge has an

6The variant presents therein a sub-cubic major without bounds on its number of vertices.
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outerface. The grid-points on this outerface form the border of the drawing, and
all the grid-points that are inside this border (in other words the grid-points that
are not strictly in the outerface) form the internal area of the drawing.

For every k ⩾ 1 we denote by Hk the 3-connected graph on 3k vertices that
consists in k nested triangles, as represented in Fig. 1.6.

Figure 1.6: H4 (left) and a minor-drawing of H4 (right): the blue area is the
internal area of the drawing.

Claim 1.2.9. Every grid minor-drawing of Hk preserving its embedding has in-
ternal area more than k2.

Proof. We prove this by induction on k. Suppose first that k = 1. Then the
smallest minor-drawing of the triangle H1 is on the 2 × 2-grid and has internal
area 4, which is more than 1.

Suppose now that the claim is true for some k. Let Γ be a minor-drawing of
Hk+1 that minimizes the internal area. Let F be the triangle forming the outerface
of Hk+1: observe that the subgraph of the grid induced by grid-points contained
in the super-nodes and super-edges of F contains a cycle C. Since Γ preserves
the embedding, the k other nested triangles are drawn inside this cycle, thus Γ
contains a subdrawing Γ ′ of Hk preserving its embedding, which has internal area
more than k2.

Let B be the border of Γ ′. We remark that a closed walk on this border is
a sequence of more than 2k grid-edges. Indeed, let w, h ⩾ 2 be such that the Γ ′

spans over h rows and w columns. The closed walk requires using h − 1 vertical
edges to go from the highest grid-point to the lowest, and the same amount for
the return. Similarly, it requires 2(w− 1) horizontal edges to go from the leftmost
grid-point to the rightmost and return. Moreover, since the area of Γ is more that
k2, then either h or w, say h, is more than k. Then the whole closed walk requires
more than 2(k − 1) + 2(w − 1) = 2k grid-edges.
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Since C is a cycle of the grid that goes around B, it requires more edges than
this closed walk, thus at least 2k + 1 of them. The internal area of Γ contains
the grid-points of the subdrawing of Hk, plus those on C, thus is more than
k2 + (2k + 1) = (k + 1)2.

⌟

Figure 1.7: A representation of G.

Let k ⩾ 1 and n ⩾ 6k. Let G be the graph composed of t =
⌊

n
3k

⌋
⩾ 2 copies

of Hk attached forming a chain as in Fig. 1.7. The graph G is k-outerplanar and
has at most n vertices. Moreover, G is 3-connected so choosing the outerface
fixes the embedding. Let Γ be a minor-drawing of G on a grid of smallest area
A, not necessary preserving the embedding. As we saw in Section 1.2.2, we can
suppose that the minor-drawing is simple. Observe that no matter the choice of
the outerface, Γ preserves the embedding of at least t − 1 copies of Hk that are
subgraphs of G. Thus the minor-drawing of G contains t−1 distinct subdrawings,
each one is a minor-drawing of Hk preserving its embedding, thus by Claim 1.2.9
of internal area at least k2. Therefore A is at least (t− 1) · k2 = Ω(nk).

1.2.5 From grid-major to grid-drawing

In this section, we consider the reverse question: considering a graph H that is a
minor of the w × h-grid, we want to deduce a grid-drawing of H.

Theorem 1.2.10. Let H be a graph of maximum degree ∆ with a w × h minor-
drawing and let δ = max(1, ⌊∆/2⌋). Then, H has a δw × δh poly-line drawing,
and a 3w × 3h orthogonal drawing if ∆ ⩽ 4. Such drawings can be constructed in
polynomial time.

Before proving the theorem, observe that it implies that any lower bound on
the area of orthogonal drawing, or poly-line drawing for a graph of bounded max
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degree, gives a lower bound on the area of grid-major. Note that [BCE+19] showed
an example of a graph, a ladder with a universal vertex inspired from [Bie11], that
is minor a grid of area n and for which any grid-drawing required an area of Ω(n2).
This theorem implies that any such graph for which the area of the grid-major is
small compared to the area of the grid-drawing has a vertex of high degree.

Proof. Let H be a planar graph of max degree ∆ with a w × h minor-drawing Γ .
Each vertex u of H is represented in Γ by the super-node Xu and each edge (u, v)
is represented by a grid-edge whose extremities lie respectively in Xu and Xv.

Suppose first that H has maximum degree ∆ ⩽ 1, then H is the disjoint
union of isolated edges and isolated vertices. Thus we can trivially deduce a w×h
orthogonal drawing Γ ′ from Γ : for each edge (u, v) of H, we keep as representatives
of u and v only the two vertices respectively in Xu and Xv that are incident to the
grid-edge representing (u, v), and for each isolated vertex u, we keep an arbitrary
vertex of Xu. For the rest of the proof we can suppose ∆ ⩾ 2 and denote δ =

⌊
∆
2

⌋
.

For each vertex u of H of degree d ⩽ ∆, each edge incident to u is represented
by a grid-edge ei = (ui, vi) for some i ∈ {0, . . . , d− 1}, where ui is the extremity
in Xu and vi the extremity in the super-node corresponding to the neighbor of u.
Note that for i ̸= j, vi and vj are distinct but it is possible that ui = uj.

We define X ′
u = Xu ∪ {e0, . . . , ed−1}, the extended super-node of u. Note the

extended super-nodes overlap on the edges between super-nodes: for each edge
(u, v) of H, there is an edge e in Γ between Xu and Xv and e = X ′

u ∩X ′
v.

Let us first prove the following claim:

Claim 1.2.11. Let u be a vertex of H of degree d and extended super-node X ′
u.

There is a rooted tree Tu of root ru in X ′
u such that:

• The leaves are exactly v0, . . . , vd−1,
• No subtree induced by the descendant of a child of ru has more than

⌊
∆
2

⌋
leaves.

Proof. If d = 0, then Tu is reduced to ru, an arbitrary vertex in Xu. If d = 1, it
suffices to take V (Tu) = {v0, ru = u0} and E(Tu) = {e0}. If d = 2, let P be a path
from u0 to u1 inside X ′

u, take ru = u0 and Tu = P ∪ {e0, e1}. We can suppose for
the rest of the proof that d ⩾ 3.

Take an unrooted subtree T of X ′
u that connects v0, . . . , vd−1: T exists since X ′

u

is connected. The vertices v0, . . . , vd−1 have degree 1 in X ′
u so they are necessary

leaves in T , and any other leaf can be deleted from T thus the leaves of T are
exactly {v0, . . . , vd−1}.

Let us now choose a root for T . Let r be an arbitrary internal node of T and
choose r as the root of T . We define T (n) to be the subtree of T induced by the
descendants of a node n and nleaves(n) the number of leaves in the subtree T (n).
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While r has a child c such that nleaves(c) >
⌊
∆
2

⌋
, choose c as the new root of T .

Let us prove that this computes a rooted tree with the desired properties. If T (c)
has more than

⌊
∆
2

⌋
leaves, then T \T (c) has ℓ ⩽

⌊
∆
2

⌋
leaves. When we choose c as

the new root, c is not a leaf thus c has t children c1, . . . , ct = r with 2 ⩽ t ⩽ 4, and

each subtree contains at least one leaf. Observe that nleaves(c) =
t−1∑
i=1

nleaves(ci),

thus for each i, nleaves(ci) ⩽ nleaves(c) and nleaves(r) = ℓ ⩽
⌊
∆
2

⌋
< nleaves(c).

Therefore, each step can only decrease the number of leaves in the biggest subtree,
and since we progress toward the leaves, it has to eventually stop. Thus after the
final step, we obtain a root such that none of its children induce a subtree with
more than

⌊
∆
2

⌋
leaves. Then let ru be this final root and Tu the tree T rooted in

ru. The rooted tree Tu has all the required properties.

Thanks to Claim 1.2.11, we can create a new representation Γ1 of H on a
w × h-grid where:

• each vertex u of H is associated to the root ru of the tree Tu,
• each edge (u, u′) of H is associated to a path from ru to ru′ in Tu ∪ Tu′ .

We define a weight function ω on the edges of Tu such that for an edge (x, y)
where x is the parent of y, the number of leaves of Tu(y) is ω((x, y)), where Tu(y)
is the subtree of Tu rooted in y. Note that Claim 1.2.11 implies that ω((x, y)) ⩽ δ
for each edge (x, y).

Notice that in the representation Γ1, each vertex of H is represented by one
vertex of the grid, but the paths representing the edges of H are not edge-disjoint.
More precisely, each edge e of Tu ∪ Tu′ is used by ω(e) such paths. In order to
obtain a poly-line drawing, we want to represent the edges of H by vertex-disjoint
paths between representatives of the vertices of H, where the edges of the paths
are not necessary edges of the grid but are straight lines between vertices of the
grid. In order to do that, we want first to make a new drawing Γ2 on a bigger
grid where each Tu of Γ1 corresponds to a star Su of center ru and each branch is
a path that corresponds to a path from ru to a leaf of Tu.

Let us now draw the new representation Γ2 on a δw × δh-grid. Number the
columns 1, 1+ 1

δ
, 1+ 2

δ
, . . . , 1+ δ−1

δ
, 2, 2+ 1

δ
, . . . , w+ δ−1

δ
, and number the rows the

same way 1, 1 + 1
δ
, 1 + 2

δ
, . . . , h + δ−1

δ
. In order to create correspondence between

the two drawings on grids of different sizes, we will need the following tools to
characterize Γ1.

Notation inside a tree: Consider a vertex u of H: we can use the previous
notation inside Tu: the leaves of Tu are (vi)i∈{0,...,d−1} where d is the degree of u,
(ei = (ui, vi))i∈{0,...,d−1} are the final edges of the tree and are the only edges of Tu
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that are in common with other trees of Γ1. Upon renumbering (vi)i∈{0,...,d−1}, we
can suppose that they are numbered in their order of appearance in an Euler tour
of Tu that respects the embedding of Tu and encounters the children anticlockwise.

Port number: Consider a final edge ei = (ui, vi) for some i ∈ {0, . . . , d− 1}.
Let x be the child of ru on the path from ru to vi. The edge (ru, x) leads to a
subtree with ωx = ω((ru, x)) ⩽ δ leaves, and there is a constant cx such that the
leaves of T (x) are vcx , vcx+1, . . . , vcx+ωx−1. Since vi is a leaf of T (x) there is an
integer p ∈ {0, . . . , ωx − 1} such that i = cx + p. We define the port number of ei
as port(i) = p = i − cx. Observe that the port number of ei depends only on i
and on which subtree at the root it belongs to and that 0 ⩽ port(i) ⩽ δ− 1. Note
also that in each strict subtree, the port numbers are increasing with respect to
the order of the Euler tour.

Direction of an edge: Let x be a vertex of Tu and e an edge of Tu incident
to x: since x is a vertex of a grid, it has at most 4 incident edges coming from
each direction. We say that the edge e has a direction with respect to x that can
be up, down, left or right. For example, if e has direction left with respect to
x, it means that e is on the left of x in the representation. Observe that for each
e = (x, x′), the direction of e with respect to x is the opposite direction of that of
e with respect to x′.

Switch: Let x be a vertex of Tu of coordinate (i, j) in Γ1, such that x is not ru
nor a leaf of Tu. In Γ2, we define the switch of x, noted switch(x), the subgrid
induced by the vertices of coordinates (i + k

δ
, j + k′

δ
)0⩽k,k′⩽δ−1, with what we call

gates on the vertices of the border and that we detail right after. There are
four kinds of switches, one for each direction. The direction of the switch of x
is the direction with respect to x of the edge coming from the parent of x. The
border of the switch has four sides (one in each direction), and for each side
c ∈ {up, down, left, right}, for each integer p ∈ {0, . . . , δ − 1} we define a gate of
the switch(x), denoted gate(x, c, p) as follow:
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Figure 1.8: Representation of a left switch for a vertex of coordinates (i, j) in Γ1.

Suppose that the direction of the switch of x is left, as represented on Fig. 1.8.

gate(x, left, p) =(i, j +
p

δ
)

gate(x, down, p) =(i+
p

δ
, j)

gate(x, right, p) =(i+
δ − 1

δ
, j +

p

δ
)

gate(x, up, p) =(i+
δ − 1− p

δ
, j +

δ − 1

δ
)

We say that p is the gate number. Observe that on the side of the direction of the
switch, the gates (that will be called in-gates) are ordered with increasing number
clockwise around the switch, and on each other side, the gates (that can be called
out-gates) are ordered anti-clockwise. All the switches respect this property no
matter their direction: any kind of switch can be obtained by rotating the one
described here so that the particular side matches the direction of the switch.

Claim 1.2.12. Let e = (x, x′) be an edge of Tu where x is the parent of x′, incident
to x and x′ with direction respectively c and c′. Then for all p ∈ {0, . . . , δ − 1},
gate(x, c, p) and gate(x′, c′, p) are adjacent.

38 C. Hilaire



Contents

Proof. Let e = (x, x′) be an edge of Tu where x is the parent of x′. We have seen
earlier that e is incident to x and x′ with opposite directions c and c′. Since x and
x′ are adjacent in Γ , their switches are next to each other in Γ2, such that the side
c of switch(x) is facing side c′ of switch(x′). Since e is the edge coming from the
parent of x′, switch(x′) has direction c′ and switch(x) has direction different than
c. This implies that the gates on the side c of switch(x) are ordered anti-clockwise
around the center of the switch and the gates on the side c′ of switch(x′) are ordered
clockwise. Therefore, for all p ∈ {0, . . . , δ − 1}, gate(x, c, p) and gate(x′, c′, p) are
adjacent.

Let Ru be the vertex in Γ2 with the same coordinates as ru in Γ1. At this point,
we have a treelike disposition of the switches in Γ2, with a Ru as the root. The aim
is to deduce from this representation the star Su whose branches are constructed
using the switches.

For each k ∈ {0, . . . , d− 1} let Qk be the path in Tu from ru to vk, and let
tk = Ru if uk = ru, tk = gate(uk, c, p) otherwise, with p the port number of ek and
c the direction of ek with respect to uk.

Claim 1.2.13. There is a collection of paths (Pk)k∈{0,...,d−1}, each from Ru to tk,
that intersect each other only in Ru.

Proof. For each k ∈ {0, . . . , d− 1}, construct Pk as follow. Let p be the port
number of k, let ℓ be the length of Qk, and Qk = x0 − x1 − · · · − xℓ with ru = x0

and vk = xℓ. By construction, ℓ > 0.
If ℓ = 1, then uk = ru and Qk = ru − vk, thus tk = Ru and Pvk is reduced to

Ru.
If ℓ ⩾ 2, for each s ∈ {1, . . . , ℓ− 1} we put cs,in and cs,out the directions of

respectively (xs−1, xs) and (xs, xs+1) with respect to xs. We construct by induction
the path P s

k from Ru to gate(xs, cs,out, p).
The path P 1

k is the path Ru − gate(x1, c1,in, p) − gate(x1, c1,out, p). Let s ∈
{1, . . . , ℓ− 1} and suppose that Ps−1 is constructed from Ru to gate(xs−1, cs−1,out, p).
Then Ps is constructed as the union of Ps−1 and the path gate(xs−1, cs−1,out, p) −
gate(xs, cs,in, p)− gate(xs, cs,out, p). At the end of this construction s = ℓ− 1 thus
gate(xℓ−1, cℓ−1,out, p) = tk and Pk = P ℓ−1

k .
Let us show now that these paths intersect each other only in Ru. Suppose

that there exist k, k′ such that Pk and Pk′ intersects.

Case 1: Suppose first that they intersect in a common vertex v ̸= Ru of the
paths. v is a vertex of Pk \Ru thus there is a vertex x in Qk \ ru and a direction c
such that v = gate(x, c, p) where p is the port number of ek. Similarly, v is a vertex
of Pk′ \ Ru thus x ∈ Qk′ \ ru and p is also the port number of ek′ . By definition,
two edges have the same port number if and only if k = k′, or the leaves vk and
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vk′ are not on the same subtree rooted in a child of ru, which is impossible since
they have x as common ancestor.

Case 2: Suppose now that they intersect in a point that is not a vertex of the
paths. Thus there are two edges fk ∈ E(Pk) fk′ ∈ E(Pk′) that cross each other.
By Claim 1.2.12, an edge between two switches is an edge of the grid, thus fk, fk′
cannot be both edges between switches. This implies that one of them, w.l.o.g.
fk, is either incident to Ru or inside a switch.

Suppose first that fk is incident to Ru. Let (i, j) be the coordinates of Ru and
N(ru) the list of children of ru and for each child x ∈ N(ru), cx is the direction
of the switch of x. Let Gu be the subgraph of the grid induced by (i + i′

δ
, j +

j′

δ
)0⩽i′,j′⩽δ−1 ∪ (gate(x, cx, p))x∈N(ru),p∈{0,...,δ−1}: it is the part of the grid around

Ru where vertices are in no switch, except the ones on the border that are the
in-gates of the switches of the children of ru (Fig. 1.9 gives a representation of
Gu with δ = 3). Therefore, fk is an edge from Ru to an in-gate on the border
of Gu, and crosses fk′ somewhere in Gu thus where there is no switch. However,
by construction and Claim 1.2.12, there is no edge outside a switch between two
gates that are not adjacent in the grid. Thus fk′ has to be also an edge incident
to Ru. Thus fk and fk′ intersect in Ru, which contradicts the hypothesis.

Suppose now that there is vertex x such that fk and fk′ intersect inside switch(x).
Let p = port(k) and p′ = port(k′), and cin the direction of the switch of x. Since fk
and fk′ are inside switch(x), by construction of Pk and Pk′ , there are c and c′ such
fk = (gate(x, cin, p), gate(x, c, p)) and fk′ = (gate(x, cin, p

′), gate(x, c′, p′)). Sup-
pose w.l.o.g. that k < k′. Then p < p′ since vk and vk′ have x as common ancestor
and thus are on the same subtree at the root. This implies that gate(x, cin, p) is
before gate(x, cin, p

′) clockwise gate(x, c, p) is before gate(x, c′, p′) anticlockwise.
Indeed, if c = c′, the out-gates on a same side are ordered anti-clockwise, and
if c ̸= c′, since the leaves of Tu are ordered in their order of appearance in an
Euler tour, c is before c′ anticlockwise thus gate(x, c, p) is also before gate(x, c′, p′)
anticlockwise in this situation. Therefore, fk = (gate(x, cin, p), gate(x, c, p)) and
fk′ = (gate(x, cin, p

′), gate(x, c′, p′)) do not intersect.

At this point, for each vertex u of degree d of H, there is a star Su in Γ2 whose
center is Ru and whose branches are (Pk)1⩽h⩽d. It remains to connect the stars
together to obtain the poly-line drawing of the H.

Claim 1.2.14. For each edge (u, u′) in H, there is a path Pu,u′ from Ru to Ru′ in
Γ2 and all those paths do not intersect each other except in their extremities.

Proof. Let (u, u′) be an edge of H. There are k, k′ such that:
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• Tu has a leaf vk such that ek = (uk, vk) corresponds to (u, u′) in the minor-
drawing, with uk ∈ Xu, vk ∈ Xu′ ;

• Tu′ has a leaf vk′ such that e′k′ = (u′
k′ , v

′
k′) corresponds to (u, u′) in the minor-

drawing, with uk′ ∈ Xu′ , v′k′ ∈ Xu

Observe that ek and e′k′ both represent (u, u′) thus uk = v′k′ and vk = u′
k′ . Let p

be the port number of ek (resp. p′ the port number of e′k′), and Pvk (resp. Pv′
k′
)

be the path as described in Claim 1.2.13. Let us show that we can add an edge
e (not necessarily a grid-edge) to the drawing Γ2 so that Pvk ∪ e ∪ Pv′

k′
is a path

from Ru to Ru′ .
Assume first that Pvk ̸= {Ru} and Pv′

k′
̸= {Ru′}. The last vertices of those

paths are respectively gate(uk, c, p) and gate(u′
k′ , c

′, p′), with c and c′ the direction
of ek with respect to respectively uk and u′

k′ . Since uk and u′
k′ are the extremities

of ek, the side c of switch(uk) and the side c′ of switch(u′
k′) are facing, even if the

gates are not facing gates with same number (as they are all out-gates). Here we
add the edge e that connects gate(uk, c, p) and gate(u′

k′ , c
′, p′) without necessarily

p = p′. There is no other edge between those two switches, thus e intersects no
other edge, and from Claim 1.2.13, neither Pvk nor Pv′

k′
intersect another path.

Thus Pu,u′ = Pvk ∪ e ∪ Pv′
k′

is a path from Ru to Ru′ that does not intersect other
path.

Suppose now w.l.o.g. that Pvk = {Ru} and Pv′
k′
̸= {Ru′}, then gate(u′

k′ , c
′, p′) =

gate(vk, c
′, p′) is a gate on the border of Gu (as described in the proof of

Claim 1.2.13), thus the edge e = (Ru, gate(u
′
k′ , c

′, p′)) intersects no other path
and Pu,u′ = e ∪ Pv′

k′
is a path from Ru to Ru′ that does not intersect other path.

Finally, if Pvk = {Ru} and Pv′
k′

= {Ru′}, then ru and ru′ are adjacent thus
Pu,u′ = (Ru, Ru′) is a path from Ru to Ru′ that does not intersect other paths.

For each vertex u of H, there is a corresponding vertex Ru in Γ2 and for each
edge (u, u′) of H, there is a path from Ru to Ru′ in Γ2, and those paths are
vertex-disjoint. Thus Γ2 is a poly-line drawing of H on a grid ⌊∆/2⌋w×⌊∆/2⌋h.

Adaptation of the construction to an orthogonal drawing. Suppose now
that the maximum degree of H is ∆ ⩽ 4, let us show that we can obtain an
orthogonal drawing of H on a 3w × 3h grid. Let us first construct Γ1 the same
way as previously and Γ2 almost the same way, but considering δ = 3 instead of
δ =

⌊
∆
2

⌋
, with the same notation. Observe that the port numbers are in {0, 1} even

if the gates are constructed with gate numbers in {0, 1, 2}: the gates numbered 2
are not used.

In order to construct an orthogonal drawing of H from Γ2, we need to replace
every oblique edge in Γ2 by a path of the grid, which is why we need a bigger grid.

Let e be an oblique edge, there are 3 possibilities:
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Figure 1.9: The seven principal configurations of the edges incident to Ru (in blue)
and their corresponding transformations (in red).

1. e is an edge incident to Ru for some u in H;
2. e is inside a switch;
3. e is an edge that connects two stars (as defined in Claim 1.2.14);

Case 1: Let Ru be the vertex corresponding to u in Γ2. Let us modify the edges
inside Gu (the part of the grid around Ru) so that there is no oblique edge incident
to Ru.

Since ∆ ⩽ 4, there are at most 4 edges incident to Ru and at most two of them
incident to a same switch, thus there are only 7 configurations to consider. Any
other configuration is a rotation of one of those (with a modification of the initial
emplacement of Ru inside Gu that does not affect the result), or a simplification
by considering fewer edges. Those configurations are depicted (in blue) in Fig. 1.9
as well as how to modify them (in red) to get rid of the oblique edges. The gray
areas are parts of the potential switches around Ru, at coordinates (i, j), and the
violet area represents Gu. Observe that the modifications are restricted to Gu and
thus do not affect the rest of the drawing.

Case 2: Let x be a vertex of Γ1, let us modify the edges inside switch(x) to get
rid of oblique edges. We can consider w.l.o.g. that the direction of the switch
is left (any other direction is a rotation of this situation), and that there are
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Figure 1.10: Different possibilities for two paths to go through a switch up, and
how it is transformed into an orthogonal path.

two paths passing through the switch (otherwise we consider only the edge that
actually exists). Recall that a path enters and gets out of a switch through gates
of same number. The different configurations are represented in Fig. 1.10, one
figure for each choice of out-gate for the path using gates numbered 0. The black
points are the in-gates used, the blue points the out-gates, and how to connect
them without oblique edges in red (when there are multiple choices for the out-gate
numbered 1, they are represented with dotted lines).

Case 3: Let e be an edge added between two stars: that is the only case where an
edge between two switches can be oblique, because that is the only case where an
edge can be between out-gates with potentially different port numbers. There are
two vertices x, x′ such that e = (gate(x, c, p), gate(x′, c′, p′)) with c, c′ being the two
opposite directions of (x, x′) in Γ1. If p = p′ = 1, then e is not oblique, thus w.l.o.g.
p = 0 and p′ is either 0 or 1. Recall that e is an edge added to connect stars thus x
and x′ were each a leaf of a tree of Γ1 thus ω((x, x′)) = 1 and there is no other edge
between the switch of x and the switch of x′. Therefore gate(x, c, 1) is unused and
e can be replaced by the path of the grid gate(x, c, 0)−gate(x, c, 1)−gate(x′, c′, 1)
if j = 1. If j = 0, gate(x′, c′, 1) is also unused and e can be replaced by the path
gate(x, c, 0)− gate(x, c, 1)− gate(x′, c′, 1)− gate(x′, c′, 0).

By repeating these transformations for all the oblique edges of the drawing, we
obtain a new drawing where each vertex u of H is represented by a vertex Ru of the
grid and each edge of H is represented by a path of the grid, thus an orthogonal
drawing of H.
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1.3 Universal graph for bounded genus graphs

1.3.1 Overview

In this section, we show the following:

Theorem 1.1.2. For every n and every surface Σ of Euler genus g, there is a
graph Un,Σ embedded on Σ with O(g2(n + g)2) vertices that contains as minor
every graph embeddable on Σ with n vertices.

This is a generalisation of the theorem of Robertson, Seymour, and
Thomas [RST94], stating that there is a 4n2-vertex planar graph minor-universal
for planar graphs, to the graphs on surfaces.

We start with Section 1.3.2 by giving the necessary definitions in order to ma-
nipulate those graphs and surfaces. Then, in Section 1.3.3, we sketch the proof
and how it splits into two lemmas. The proof of the first one, simplifying the
graph class, is distributed into two parts: Section 1.3.4 gives a part of the proof
considering only plane graph, which result into a constructive alternative proof of
that of Robertson, Seymour and Thomas, then in Section 1.3.5 we reuse the argu-
ments and adapt them in the case of graph on surfaces. Finally, in Section 1.3.6,
we prove that all the graphs of this class are minors of the minor-universal graph
we describe.

1.3.2 Preliminaries

We consider compact connected surfaces without boundary. A canonical system
of loops for a surface Σ of Euler genus g is a one-vertex graph embedded on Σ
with g loop-edges such that by cutting Σ along these loops results in a surface
homeomorphic to a polygon P with 2g sides. The way the pairs of sides of P
are reattached to form Σ can be described by a signature, a word associating
clockwise one symbol with each side of P . The polygon P and its signature form a
canonical polygonal schema. Note that the loops are either two-sided (the surface
Σ is orientable with oriented genus g/2) or one-sided (Σ is non-orientable with
non-oriented genus g).

For g > 0, the signature is a1a2ā1ā2 . . . ag−1agāg−1āg if Σ is orientable, and
a1a1 . . . agag if Σ is non-orientable. For the sphere, g = 0, the signature is a0ā0 by
convention. Sides are reattached if they have the same (or opposite) symbol in the
signature, given the convention that positive symbols correspond to a clockwise
orientation of the sides, and negative symbols to an anticlockwise orientation.

Consider a graph G embedded7 on some surface Σ with a canonical system of
7We only consider simple graphs and cellular embeddings, i.e., where each face is homeomor-

phic to a disc.
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loops L. Denote by G ⊎ L the graph embedded on Σ obtained from the union of
G and L, and by adding a new vertex at each intersection between G and L.

A polygonal embedding for G is the planar embedding Π into a polygon obtained
from G ⊎ L by cutting Σ along the edges of L. (We refer to Fig. 1.11 for an
illustration.) The edges and vertices on L appear duplicated on the boundary of
outerface of Π. More precisely, the boundary of the outerface of Π is a cycle that
can be cut into a clockwise sequence of paths sharing their extremities. These
paths, called sides of Π, correspond to the edges of the polygon P , and their
extremities, called corners of Π, corresponds to the vertices of P . Note that
corners have degree two in Π. The ordered sequence of corners is called the border
of Π. The signature of Π, denoted by σ(Π), describes how the sides of Π are
reattached to form G ⊎ L on Σ. More precisely, the ith symbol of the signature
is associated with the ith side of Π, i.e., the path between the ith and (i + 1)th
corners. These sides are merged according to the orientation given by the symbols,
and there are called twin sides of Π. Obviously, twin sides must contain the same
number of vertices. Furthermore, the vertices and edges that are identified in this
process are called respectively twin vertices and twin edges.

r

ℓ1

ℓ2

a1

ā1

a2ā2

Figure 1.11: The graph K6 embedded on the torus (of Euler genus 2) with the sys-
tem of loops L = ({r} , {ℓ1, ℓ2}), and a polygonal embedding Π of K6 of signature
σ = a1a2ā1ā2. By construction, K6 is a minor of the graph sewing(Π) = K6 ⊎ L.

Given a polygonal embedding Π, the sewing of Π, denoted by sewing(Π), is
the graph obtained by reattaching the sides of Π according to its border and its
signature. It is clear that, if Π comes from G⊎L embedded on Σ by cutting along
the edges of L, then sewing(Π) is isomorphic to G ⊎ L. In particular, sewing(Π)
embeds on Σ and contains G as minor.
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1.3.3 Main result

To prove Theorem 1.1.2, we consider a graph G embedded on the surface Σ of Euler
genus g and having a canonical systems of loops L with vertex r and signature
σ. Thus G has a polygonal embedding ΠG such that G is a minor of sewing(ΠG),
a graph that embeds on Σ. Note that |V (ΠG)| ⩽ 2|V (G ⊎ L)| + |σ| since every
vertex of G ⊎ L appears on at most two sides of ΠG, and each corner is a copy of
r. In fact, ΠG has at most n internal vertices due to G, and a certain number of
vertices lying on the sides of ΠG due to r and to the intersections between G and
L. We can bound this number thanks to the following result8:

Lemma 1.3.1 ([LPVV01, FHdM22]). Given an embedding of G on a surface Σ
of Euler genus g, there is a polynomial time algorithm that computes a canonical
system of g loops such that each loop intersects any edge of G in at most 4 points if
Σ is orientable [LPVV01], and at most 30 points if Σ is non-orientable [FHdM22].

It follows that |V (ΠG)| = O(|V (G)| + g|E(G)|) = O(g(n + g)) since each of
the g loops of L crosses O(1) times each of the at most 3n + 3g − 6 edges9 of G.
Our strategy then is to transform step by step the initial polygonal embedding
ΠG into some unique polygonal embedding U that preserves signature and minor
containment of its sewing. The number of vertices of this final embedding is
|V (U)| = O(|V (ΠG)|2). Our minor-universal graph Un,Σ as in Theorem 1.1.2 is
nothing else than sewing(U) that has therefore less than |V (U)| = O(g2(n + g)2)
vertices as claimed.

To formalize signature and minor containment preserving, we introduce the
following relation. A polygonal embedding Π is a p-minor of a polygonal embed-
ding Π ′ if they have the same signature and if sewing(Π) is a minor of sewing(Π ′).
Moreover, we say that Π has size (m,n) if each side has at most m vertices, the
corners excluded, and at most n internal vertices (those that are not lying on
the boundary of the outerface of Π). In particular, every polygonal embedding
Π of size (m,n) has at most n + |σ(Π)|(m + 1) vertices10, and sewing(Π) has
at most n + |σ(Π)|(m + 1)/2 vertices. This is even at most n + |σ(Π)|m/2 + 1
vertices if σ(Π) is minimal, i.e., comes from a system of loops (see Section 1.3.6).
A polygonal embedding of size of (m, 0) is a Hamiltonian outerplane graph.

The final polygonal embedding is denoted hereafter by Uσ,m, where σ is any
signature and m an integral parameter. We will see later in Section 1.3.6 that
Uσ,m has signature σ and size (m,O((|σ|m)2)). Roughly speaking, it is a square

8We refer to [CdV21][Theorem 8.1] for a reformulation of the original statement of [LPVV01].
9From Euler’s Formula in simple connected graphs of Euler genus g, that is n − m + f =

χ(Σ) = 2− g, and from the fact that 3f ⩾ 2m.
10|σ(Π)| denotes the number of symbols in σ(Π).
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half-grid cut by its diagonal. The vertices on the boundary of the outerface are
those of the diagonal, see Fig. 1.12 for an example.

a1 a2 ā1 ā2

m = 3

|σ|m

Figure 1.12: The polygonal embedding Uσ,m, with m = 3 and signature σ =
a1a2ā1ā2.

The technical theorem is the following. Note that it applies to any polygonal
embedding, not only those of canonical signature.

Theorem 1.3.2. Every polygonal embedding Π of size (m,n) is a p-minor of
Uσ(Π),m+2n.

Before proving Theorem 1.3.2, let us show that it implies Theorem 1.1.2. Con-
sider a graph G on n vertices embedded on a surface Σ of Euler genus g. By
Lemma 1.3.1, G has a polygonal embedding ΠG whose signature σ depends only
on Σ (as it corresponds to that of the canonical polygonal schema of Σ), and
such that ΠG has size (m,n) with m = O(n + g). Moreover, G is a minor11 of
sewing(ΠG). By Theorem 1.3.2, ΠG is a p-minor of Uσ,m+2n, which by definition
of p-minor implies that sewing(ΠG) is a minor of sewing(Uσ,m+2n). It follows that
G is a minor of sewing(Uσ,m+2n) = Un,Σ, that has the required properties: it is
embedded on Σ and has O(g2(n+ g)2) vertices.

To prove Theorem 1.3.2, we proceed in two steps, which are summarized and
formalized by the next two lemmas whose proofs are sketched hereafter and fully
proved later:

Lemma 1.3.3. Every polygonal embedding Π of size (m,n) is a p-minor of a
polygonal embedding of size (m+ 2n, 0).

Intuition is that all internal vertices of Π can be somehow pushed to the sides
of the outerface, without increasing much the number of vertices on each side. It

11In fact ΠG is a minor of sewing(ΠG) \ {r} as the unique vertex r of system of loops is not
part of G and can be removed.
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follows we can consider that all the vertices belong to the outerface of the polygo-
nal embedding making it outerplanar. This is done by first cutting along the edges
of some spanning forest of the inner graph (rooted in a vertex of the outerface),
creating an empty space and transforming the graph into an outerplanar graph.
Along this process, each vertex that is not a leaf appears more than once (the
number of new vertices is bounded by the number of edges of the forest, thus by
n). To keep track of this vertex duplication, we add some edges that could be
contracted later to get back to the original polygonal embedding. Other trans-
formations are then needed to embed those new edges and obtain an outerplanar
polygonal embedding of the right size and containing Π as a p-minor.

Lemma 1.3.4. Every polygonal embedding Π of size (m, 0) is a p-minor of
Uσ(Π),m.

Note that Theorem 1.3.2 is a straightforward combination of Lemma 1.3.3 and
Lemma 1.3.4.

The proof of Lemma 1.3.4 is inspired from the embedding into a n × n-grid
for hamiltonian planar graphs with n vertices [RST94, Theorem (1.3)]. From this
embedding, one can easily show that outerplanar graphs with n vertices are minors
of a half-n× n-grid. In our context, the diagonal of this half-grid is the place for
the sides of our polygonal embedding, as depicted in Fig. 1.12. Interestingly, along
the way, we give in Proposition 1.3.8 an alternative proof of a result of [RST94,
Theorem (1.4)] that states that every planar graph with n vertices is minor of a
Hamiltonian planar graph with 2n vertices.

Organization of the proofs

Similarly to the notion of major, we say that polygonal embedding ΠG is a p-major
of ΠG, if ΠH is a p-minor of ΠG.

Because pthe lane graphs we will consider are actually polygonal embeddings,
the boundary of the outerface is a cycle. Whenever we talk about outerface we
refer to this cycle. We say that two plane graphs H,G such that H is minor of
G have the same outerface if the minor H has been obtained from G without
removing vertices or edges of the outerface of G, nor contracting edges with both
endpoints on the outerface of G. It follows:

Property 1.3.5. If a polygonal embedding ΠH is a minor of polygonal embedding
ΠG with same outerface, border and signature, then ΠH is a p-minor of ΠG.

Recall that a polygonal embedding is nothing else than a plane graph with a
given cycle outerface, border and signature. Property 1.3.5 allows us to consider
that we work on plane graphs, as long as we keep the same outerface and border
when constructing a major.

48 C. Hilaire



Contents

In Section 1.3.4, we consider plane graphs with a fixed cycle outerface, i.e., with
an outerface whose boundary is a cycle. We give tools to construct a plane major
that preserves this outerface. These tools will be used later in the construction of
the p-major of Π in Section 1.3.5.

1.3.4 Considering plane graphs

Let G be a planar graph G with a given planar embedding and having a cycle
outerface O. We denote by n = |V (G)| − |V (O)| the number of internal vertices
of G.

Because the boundary of the outerface of G is a connected graph (a cycle),
we can assume w.l.o.g. that G is connected as well. If not, we can for instance
triangulate all the faces except the outerface. By doing this we get a plane major
of G without altering its number of vertices nor its cycle outerface.

Let F be a forest of G, composed of k trees denoted by T1, . . . , Tk, and con-
structed as follows:

• Start with a spanning tree T of G;
• Remove one edge of any path in T that connects two vertices of O, if any;
• Remove all remaining isolated vertices that are in O; and
• Root each Ti at the only one vertex of Ti ∩O, denoted by ri.

Observe that F spans all internal vertices of G, thus |V (F )| = n + k and
|E(F )| = n. Because we consider a planar major of G, it is quite tempting to add
edges to force F to be a single tree. However, we cannot do that and suppose
that the inner vertices induced a connected subgraph of G, as there could be an
edge between two vertices of the outerface separating the internal vertices into two
parts.

We now construct a major of G, denoted by G1, that consists in blowing up
each tree Ti into a graph T ′

i = Ci ∪ Ei, composed of a cycle Ci plus a set Ei of
extra edges. More precisely, blowing up Ti consists in traversing the tree according
to a plane Euler tour from ri (or in other words, a walk along the boundary of the
outerface of Ti considered here as a single plane graph). The cycle Ci is constructed
iteratively by adding a new vertex at each vertex of Ti visited along this tour, two
consecutive vertices on this tour being connected by an edge. See Fig. 1.13 for an
illustration. Since F has no isolated vertices, Ti has at least one edge. If Ti has
exactly one edge, then Ci consists of one single edge. The set Ei is composed of
all the edges connecting any two vertices u, v of Ci if they corresponds to the same
visited vertex of Ti and that, among them, appear consecutive during the visit. In
other words, we add an edge between u, v in Ci if they corresponds to same visited
vertex w of Ti and that none of the vertices between u and v in Ci corresponds to
w.
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This completes the description of blowing up Ti into T ′
i .

Ei

airi

Ci

O

G

Ti

G1

T ′
i

Figure 1.13: Blowing up the tree Ti (with black edges) into T ′
i = Ci ∪Ei (with red

and violet edges). The root ri of T ′
i becomes an anchor ai of Ci in T ′

i .

The graph G1 is then obtained from G where each Ti is replaced by T ′
i which is

outerplanar. This is possible because the walk along the boundary of the outerface
of Ti and T ′

i are isomorphic, so T ′
i can be plugged into Ti by keeping the plane

embedding of G.

Claim 1.3.6. The graph G1 has the following properties:

• G1 is a plane major of G with same outerface O;
• C1, . . . , Ck form a partition of internal vertices of G1.
• Each Ci contains exactly one vertex in O, called its anchor;
• G1 has 2n− k internal vertices;

Proof. It is easy to check that T ′
i is a major of Ti, as it suffices to contract all edges

of Ei to obtain a graph isomorphic to Ti. By doing this for every T ′
i in G1 we get

exactly G (up to some isomorphism) since these are the only differences.
We have seen that the trees Ti’s of F form a partition of the internal vertices

of G. It follows that T ′
i forms a partition of the internal vertices of G1, and Ci as

well since V (T ′
i ) = V (Ci).

Each T ′
i intersects O in exactly one vertex, its anchor, the vertex corresponding

to ri in Ti. In particular, no edge of T ′
i belongs to O. So contracting edges of Ei

to get Ti cannot affect the outerface, and thus G1 and G have the same outerface
O.

To obtained Ci from Ti, each edge of Ti is traversed twice. It follows that
|V (Ci)| = 2|E(Ti)|. We have seen that |E(F )| =

∑k
i=1 |E(Ti)| = n. Therefore,

the number of internal vertices of G1 is
∑k

i=1(|V (Ci)| − 1) = 2n− k as we need to
remove the anchors.
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We now construct from G1 a major G2, that consists in applying a splitting
anchor operation at every anchor of G1. More precisely, consider a cycle Ci with
anchor ai in G1. Let u,w1, w2, v be the neighbors of ai, taken in this cyclically
ordered around ai, such that u, v belong to O and w1, w2 to T ′

i . By construction
u, ai, v belong to the boundary of a common face, as well as w1, ai, w2. The edge
ai−w1 belongs to Ci, and ai−w2 belongs to either Ci or Ei, depending whether ri
has one or several children, and w1 = w2 if Ci consists in one edge. The splitting
operation consists in replacing ai by an edge a′i − a′′i , called edge-anchor of ai, and
reconnecting to a′i all the ai’s neighbors going from u to w1, and reconnecting to
a′′i all the ai’s neighbors going from w2 to v. We denote by Pi the path going from
a′i to a′′i in Ci, and by Fi the new set of edges Ei in G2. Note that Ci and Pi differ
by ai, a

′
i, a

′′
i , and that Ei and Fi differ by a′′i in G2 that plays the role of ai in G1.

See Fig. 1.14 for an illustration.

u

w2 w2

Ei
Fi

Ci

O

G1
G2

Pi

a′iu a′′i vai v

w1 w1

Figure 1.14: Splitting anchor ai of Ci into the edge-anchor a′i − a′′i .

Claim 1.3.7. The graph G2 is a Hamiltonian plane major of G1 with |V (O)|+2n
vertices.

Proof. Clearly, G2 is a plane major of G1, as it suffices to contract every edge-
anchor of G2 to obtained G1.

To construct a Hamiltonian cycle in G2, we start with the cycle outerface of
G2. Then, each edge-anchor a′i − a′′i is replaced by Pi. Inherited from Claim 1.3.6
and from the fact that Ci’s partition all internal vertices of G1, all the internal
vertices of G2 are spanned by the Pi’s, which are pairwise disjoint. Thus it forms
an Hamiltonian cycle for G2.

The graph G1 has |V (O)| vertices on its outerface O and 2n−k internal vertices
(by Claim 1.3.6). Splitting each of the k anchors adds k vertices in G2. Therefore,
|V (G2)| = |V (G1)|+ k = (|V (O)|+ (2n− k)) + k = |V (O)|+ 2n.

Note that the splitting anchor operation alters the outerface. So, for the proof
of Lemma 1.3.3 that needs to consider polygonal embeddings whose twin sides
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have to be of same length (among other things), we will need to make extra
transformation on the outerface as explained later in Section 1.3.5.

Before, we observe that the two previous transformations (by Claim 1.3.6 and
Claim 1.3.7) provide an alternative proof of [RST94, Theorem (1.4)] that states
that every n-vertex planar graph is a minor of a planar Hamiltonian graph with
at most 2n vertices.

Recall that a circuit in a graph extends the notion of cycle to subgraph com-
posed of one single vertex or edge. A circuit is separating if its deletion increases
the number of connected components of the graph, and it is non-separating oth-
erwise. It is not difficult to see that every graph has a non-separating circuit with
at least one vertex.

Proposition 1.3.8. Every planar graph with n vertices and with a non-separating
circuit of k vertices is minor of a Hamiltonian planar graph with at most 2n − k
vertices. In particular, every triangulation with n ⩾ 4 vertices is minor of a
Hamiltonian planar graph with at most 2n− 4 vertices.

Proof. Let G be a plane graph with n vertices and with a non-separating circuit
of k vertices, denoted by O. W.l.o.g. we can assume that O is a cycle, i.e., k ⩾ 3,
since otherwise we can triangulate G and consider its triangle outerface as non-
separating circuit. And, obviously the triangulation is a major of G and we will
get a minor of 2n− 3 vertices that is less than 2n− k if k < 3.

First, we embed G in the plane such that all the vertices of G \O are inside O.
Note that O is not necessarily the boundary of the outerface of this embedding,
since there can be some chords outside of O. Denote by C the set of these chords.
Let G′ be the plane graph obtained from G \C such that O is the boundary of its
outerface which is a cycle.

Since G′ is a plane graph with cycle outerface O, we can construct the major G1

as in Claim 1.3.6, and the Hamiltonian plane major G2 from G1 (by Claim 1.3.7).
Due to the edge-anchor, the outerface of G2 is a subdivision of O. Therefore, we
can add all the chords of C in G2 that we can embedded outside the outerface of
G2, while preserving its planarity. Thus, G2 ∪ C is the desired major of G.

The graph G′ has n′ = n − k internal vertices by construction. So, by
Claim 1.3.7, G2 (and G2 ∪ C as well) has k + 2n′ = 2n− k vertices as claimed.

If G is a triangulation with at least four vertices, then G has a non-separating
circuit of length k + 1. Indeed, the outerface is a non-separating triangle that
can be increased by one using any incident internal face. So the above property
construction applies with k = 4.

Actually, the proof of [RST94, Theorem (1.4)] gives an upper bound of 2n− 4
vertices (assuming n ⩾ 4), and relies on Whitney’s Theorem12 [Whi31]. In contrast

12Every planar triangulation without a separating triangle has a Hamiltonian cycle.

52 C. Hilaire



Contents

Proposition 1.3.8 gives an explicit and direct construction with the same upper
bound. We believe that it gives an interesting construction of the major where the
Hamiltonian cycle cuts the graph into two sides. Inside the cycle are the copies of
edges that where initially in G, and outside of the cycle are the edges introduced by
the operations of blowing up trees and splitting anchors: contracting those edges
results in G.

1.3.5 Proof of Lemma 1.3.3

The goal of this subsection is to show that:

Lemma 1.3.3. Every polygonal embedding Π of size (m,n) is a p-minor of a
polygonal embedding of size (m+ 2n, 0).

Let Π be a polygonal embedding of size (m,n). Up to taking a p-major of Π,
we assume that each corner of Π is on the boundary of an inner triangle: if not,
we can connect by an edge the two neighbors of each corner. This does not alter
the size of Π. This is to prevent any further edge insertion that could increase the
degree of corners which must be exactly two in any polygonal embedding. The
boundary of the outerface of Π is a cycle, so the construction of G2 as in Claim 1.3.6
applies. Let Π1 be the polygonal embedding obtained from Claim 1.3.6, with Π
in the role of G, Π1 in the role of G1. The embedding Π1 admits Π as a minor
while preserving the cycle outerface (border and signature does not matter for
Claim 1.3.6). Thus Π is a p-minor of Π1. Keeping the same notation as in
Claim 1.3.6, Π1 has exactly 2n − k internal vertices that are partitioned by the
cycles C1, . . . , Ck, each Ci intersecting the outerface in one vertex, its anchor ai.

Unfortunately, as said previously, the transformation of G1 into G2 as in
Claim 1.3.7 does not preserve a polygonal embedding: twin edges in G1 are not
twin anymore in G2 because of the new created edge-anchors. So it breaks the
p-major sequence we are constructing. To preserve a polygonal embedding, we
need to modify accordingly twin sides whenever we apply a splitting anchor so
that each vertex of one side has a twin vertex on its twin side.

For this purpose we define a twin splitting operation that applies to each anchor
of Π1. Roughly speaking, we apply a splitting anchor operation while subdividing
one of the two twin edges that are incident to the twin vertex of the anchor. The
edge to subdivide depends on a total ordering ≺ defined on the vertices of the
cycle outerface. It is based on their rank, starting with the very first corner of the
border of Π1. So u ≺ v if vertex u is visited before v when traversing the cycle
outerface from the first corner of the border.

Each step t of this twin process consists in applying one twin splitting operation
which results into a new polygonal embedding Π t

1 obtained from Π t−1
1 , starting

with Π0
1 = Π1. More precisely, consider u− a− v be three consecutive vertices on
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a side of Π t−1
1 where a is an anchor and u ≺ a ≺ v. Let x, b, y be the twin vertices

respectively of u, a, v. Because an anchor cannot be a corner, vertices u, v, x, y are
well defined. The twin splitting operation consists in applying a splitting anchor
operation on a followed by (see Fig. 1.15):

• a subdivision of the edge b− y, if a ≺ b or y ≺ b; or
• a subdivision of the edge x− b, if b ≺ a and b ≺ y.

In the former case, the edge b−y is replaced by the path b−s−y and b−s becomes
the twin edge of a′ − a′′, the edge-anchor of a. In the latter case, the edge x− b is
replaced by the path x− s− b and s− b becomes the twin of a′− a′′. All the other
twin relations are unchanged. See Fig. 1.15 for an illustration. It is important to
observe that b may be an anchor that will be eventually split at some step t′ > t.

side of a

y

u v

b

a′ a′′

a≺ ≺ ≺

case 2: b ≺ a and b ≺ ycase 1: a ≺ b or y ≺ b

≺≺

s stwin side

x y

u v

b

a′ a′′

a ≺

x

Figure 1.15: The twin splitting operation for an anchor a: it combines a splitting
anchor operation on a (in brown) and an edge subdivision (in blue) incident to its
twin b. Twin relations are with dotted lines. In this representation, the focus on
the twin sides creates the illusion that the inside part of the embedding (in gray)
is a disconnected region, which is not true. However, in this representation choice,
the inside part, that is locally planar, may appear twisted if fully represented in
the non-oriented surface case.

After this twin process, denote by Π2 the final embedding obtained from Π1,
i.e., the embedding obtained from Π1 by applying successively all twin splitting
operations.

Claim 1.3.9. The embedding Π2 has the following properties:

• Π2 is a polygonal embedding that is p-major of Π1;
• Π2 has size (m+ k, 2n− k);
• P1, . . . , Pk form a partition of the internal vertices of Π2;
• During the twin process, no edge-anchor is subdivided and no two edge-

anchors are twins.
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Proof. Each twin splitting operation inserts edges and split anchors on the outer-
face of Π1. So, by contracting these new edges, we get back to Π1 which shows
that Π2 is a major of Π1. Moreover, thanks to the twin splitting, eventually every
vertex (and edge) of a side in Π2 of have a well defined twin. So, Π2 is a polygonal
embedding that is p-major of Π1.

At each twin splitting operation, the number of vertices of a side increases
by at most one while the number of internal vertices does not change. Since Π1

contains k anchors, after applying the twin process, each side of Π2 contains at
most m + k vertices (corners excluded) and 2n − k internal vertices. So, the size
of Π2 is (m+ k, 2n− k).

The internal vertices in Π1 and in Π2 are the same. And after each splitting
anchor operation the paths Pi’s span the same internal vertices than Ci’s. So by
Claim 1.3.6, Pi’s also form a partition of the internal vertices of Π2.

It remains to show that during the twin splitting process no two edge-anchors
can be twin or subdivided. So, consider any step t′ that performs a twin splitting
operation at some anchor b of Π t′−1

1 . We need to check that indeed the operation
does not create twin edge-anchors or subdivide an edge-anchor. If the twin of b
does not belong to an edge-anchor, then it is fine since the twin splitting of b will
not result in a subdivision or a twin edge of an edge-anchor. So we only need to
check the situation where the twin of b belongs to an edge-anchor. This occurs
only if b and its twin a were both anchors in Π t−1

1 for some t < t′. W.l.o.g. assume
that t is the step where a is split into a′ − a′′, and let s be the neighbor of b in Π t

1

resulting of the twin splitting of a in Π t−1
1 .

We remark that two edge-anchors cannot be incident, and that on a side with
path x − b − y that has been subdivided into x − b − s − y, then neither x − b
nor b− s can be subdivided anymore (because the twin of b cannot be an anchor
anymore). The path x−b−s can only be replaced by an edge-anchor x−b′−b′′−s
if b is an anchor.

We use the notation as above and as in Fig. 1.15. Let u − a − v be the
vertices on the twin side of b in Π t−1

1 , where a is an anchor and twin of b. W.l.o.g.
assume u ≺ a ≺ v, and let x, y be the twins of u, v respectively. In Π t

1, we have
u ≺ a′ ≺ a′′ ≺ v, and there is some vertex s adjacent to b coming from an edge
subdivision incident to b (of either b− y or x− b). Let us apply step t′ on b which
produces the edge-anchor b′ − b′′ in Π t′

1 .
To simplify notation we will reuse names u, v, x, y to denote the neighbors of

a′, a′′, b, s in Π t
1 as well as in Π t′−1

1 .
Assume that b ≺ a and b ≺ y, i.e., the case 2 holds for a. In that case, we have

the path x − s − b − y in Π t′−1
1 , and also u ≺ a′ ≺ a′′. By exchanging the roles

of s− b− y with a′ − a′′ − v the case 1 holds for b. This is because the condition
a ≺ b rewrites in b ≺ a which is true (a′′ plays the role of a). Therefore, the twin
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splitting of b subdivides the edge a′′ − v which cannot be an edge-anchor by the
previous remark. The edge-anchor b′ − b′′ is twin with a non edge-anchor as well.
Thus, step t′ does not twin or subdivide any edge-anchor in this case.

Assume that a ≺ b or y ≺ b, i.e., the case 1 holds for a. In that case, we have
the path x− b− s− y in Π t′−1

1 , and also that u ≺ a′ ≺ a′′.
If y ≺ b, then we have y ≺ s ≺ b ≺ x. By exchanging the roles of s− b−x with

u− a′ − a′′ the case 1 holds for b. This is because the condition u ≺ a′ rewrites in
y ≺ b which is true.

If b ≺ y, then we have x ≺ b ≺ s. By exchanging x− b− s with u− a′ − a′′ the
case 1 holds again for b. This is because the condition a′ ≺ a′′ rewrites in b ≺ y
which is true (s plays the role of y).

Thus, in both cases, the twin splitting of b subdivides the edge u − a′ which
cannot be an edge-anchor by the previous remark. The edge-anchor b′− b′′ is twin
with a non edge-anchor as well. And therefore, in all the cases, step t′ does not
twin or subdivide any edge-anchor.

The last property of Claim 1.3.9 (no edge-anchor is subdivided) ensures that
the k edge-anchors in Π1 are still existing in Π2 after applying the twin process
on Π1.

In order to transform Π2 into an outerplanar embedding, we will apply at each
of its edge-anchor a swapping operation. So, each step t of this process consists
in applying one such operation which results into a new polygonal embedding Π t

2

obtained from Π t−1
2 , starting with Π0

2 = Π2.
The swapping operation is defined as follows. (We reuse the same notation

as in Fig. 1.14 describing the splitting anchor operation which has been used to
make Π2.) Let a′i − a′′i be an edge-anchor of Π t−1

2 , Pi be the path connecting a′i to
a′′i , and Fi be the edges not in Pi and embedded inside the cycle Pi ∪ {a′i − a′′i }.
Finally, let b′, b′′ be the twin vertices of respectively a′i, a

′′
i .

To obtain Π t
2, we first delete the edge a′i − a′′i and all edges of Fi. By this

way, the side containing a′i − a′′i is extended by Pi. Then, on the outerface of
Π t−1

2 , we connect b′ to b′′ by a copy P ′
i of Pi and including a copy F ′

i of all the
edges of Fi such a way that the direction of Pi is preserved. It means that if u is
traversed before v when going from a′i to a′′i on Pi, then u′ is traversed before v′

when going from b′ in b′′ in P ′
i where u′, v′ are the copies in P ′

i of u, v respectively.
Furthermore, the twin of any vertex u in Pi is its copy of u′ in P ′

i . By this way,
the side containing b′ − b′′ is extended by P ′

i . See Fig. 1.16 for an illustration.
The last property of Claim 1.3.9 (no edge-anchors are twins) ensures that b′−b′′

was not an edge-anchor in Π t−1
2 . So the swapping operation on the edge-anchor

a′i − a′′i leaves unchanged all the other edge-anchors.
We denote by Π3 the final embedding obtained from Π2 by applying succes-

sively a swapping operation on each of its edge-anchors. Let us denote by A ∼= B
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inside Πt−1
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a′i a′′i
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2b′ b′′

outerface of Πt−1
2

outerface of Πt
2

u′
v′

P ′
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F ′
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b′ b′′

inside Πt−1
2
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v

Fi

inside Πt
2

Figure 1.16: A swapping operation for the edge-anchor a′i − a′′i in Π t−1
2 (on the

left) leading to a new embedding Π t
2 (on the right). Vertex u is traversed before

v when going from a′i to a′′i on Pi, and so for their twin vertices u′, v′ when going
from b′ to b′′ on P ′

i . The vertices of Pi that were internal in Π t−1
2 belongs to the

outerface of Π t
2.

if A,B are isomorphic graphs or homemorphic embeddings.

Claim 1.3.10. The embedding Π3 is a polygonal embedding p-major of Π2 with
sewing(Π3) ∼= sewing(Π2) and size (m+ 2n, 0).

Proof. Up to a permutation of the indices, we can assume that the swapping
operation for a′i − a′′i is performed at step i from Π i−1

2 . It is easy to see that each
operation does not create edge crossings, that the outerface remains a cycle, and
that each vertex (edge) of each side has a well-defined twin vertex (edge) in its
twin side. Therefore, Π i

2 is a polygonal embedding, and also Π3, that is Πk
2 , by

transitivity.
To prove it has the expected size, let ni = |V (Pi) \ {a′i, a′′i } | be the number of

internal vertices of Pi in Π i−1
2 . Note that this number is the same as the number

of vertices of Pi in Π0
2 = Π2 because Pi is not altered by any of the previous steps

j < i. Therefore, from Claim 1.3.9,
∑k

j=1 nj = 2n− k.
The swapping operation for a′i − a′′i increases by ni the number of vertices of

its side and its twin side, and, at the same time, decreases by ni the number of
internal vertices of Π i−1

2 . By Claim 1.3.9, Π2 has size (m + k, 2n − k). So after
step i, the size of Π i

2 is (m+ k +
∑i

j=1 nj, n− 2k −
∑i

j=1 nj). It follows that Π3,
which is Πk

2 , has size (m+ 2n, 0) since
∑k

j=1 nj = 2n− k.
It is clear that signature and border, i.e., the sequence of corners, are not altered

by any swapping operation. So, it remains to show that sewing(Π3) ∼= sewing(Π2)
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(and by this way it will also show that Π3 is a p-major of Π2). By transitivity, it
suffices to show that sewing(Π i

2)
∼= sewing(Π i−1

2 ).
Let Ri be the plane graph composed of Pi∪{a′i − a′′i }∪Fi in Π i−1

2 such that the
boundary of its outerface is the cycle Pi ∪{a′i − a′′i }. Similarly, let R′

i be the plane
graph composed of P ′

i ∪ {b′ − b′′} ∪ F ′
i in Π i

2 with cycle outerface P ′
i ∪ {b′ − b′′}.

Note that V (Ri) = V (Pi) and V (R′
i) = V (P ′

i ). For convenience, denote by Gj =
sewing(Πj

2). We want to show that Gi−1 ∼= Gi.
Observe that in Gi−1 and in Gi, whenever the twin sides are merged, a′i = b′,

a′′i = b′′ and thus the edge a′i − a′′i = b′ − b′′ exists in both graphs (whereas a′i − a′′i
exists only in Π i−1

2 ). Also, the way the vertices of Pi are twins with the vertices P ′
i

(by preserving the order when going from a′i to a′′i in Pi) ensures that P ′
i = Pi and

F ′
i = Fi in Gi. It follows that Ri

∼= R′
i, and since the swapping operation alters

only Ri, V (Gi−1) = V (Gi). Thus, if there is a difference between Gi−1 and Gi, it
must be an edge.

From previous equalities, if an edge x− y lies in Ri then the edge exists in R′
i

and thus in Gi. Conversely, if x − y lies in R′
i, the edge exists in Ri and thus in

Gi−1. If x− y lies outside Ri (x, y may be both in V (Ri) with an embedding not
inside Ri), then x − y lies also in Π i

2 since the swapping operation alters only Ri

(and its inside). So x− y ∈ E(Gi−1) implies x− y ∈ E(Gi) (even if x− y belongs
a some side of Π i−1

2 ). Conversely, if x− y lies outside R′
i in Π i

2, then x− y lies also
in Π i−1

2 (and outside of Ri). It follows that the edge sets of Gi−1 and Gi are the
same, proving that Gi−1 ∼= Gi.

By transitivity of the p-minor relation, every polygonal embedding Π of size
(m,n) is a p-minor of Π2 (by Claim 1.3.9) that is a p-minor of Π3 of size (m+2n, 0)
(by Claim 1.3.10), which completes the proof of Lemma 1.3.3.

1.3.6 Proof of Lemma 1.3.4

The goal of this subsection is to show that:

Lemma 1.3.4. Every polygonal embedding Π of size (m, 0) is a p-minor of
Uσ(Π),m.

The proof is an adaptation of the proof of [RST94, Theorem (1.3)] to the case
of outerplanar polygonal embeddings. The original proof uses grid major whereas
we need to use Uσ,m.

We first define the polygonal embedding Uσ,m, which is defined for all signatures
σ and m ∈ N. To construct Uσ,m, we start from a square half-grid of dimension
|σ|m, that is with |σ|m rows and |σ|m columns. The vertices are column-row pairs
of integers (i, j) where 0 ⩽ j ⩽ i < |σ|m, and (i, j) and (i′, j′) are adjacent if and
only if |i − i′| + |j − j′| = 1. Then, the vertices of the diagonal are connected by
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a cycle, (i, i) being connected to (i− 1, i− 1) modulo |σ|m. This cycle forms the
cycle outerface of Uσ,m. Finally, every m edges along this cycle is subdivised by
one vertex, a corner. More precisely, for each i ∈ {0, . . . , |σ| − 1}, we add a vertex
ci between (im, im) and (im− 1, im− 1) modulo |σ|m. The border of Uσ,m is the
sequence (c0, . . . , c|σ|−1), and the ith side of Uσ,m, associated with the ith symbol
of σ, is the path between ci and ci+1 mod |σ| on the cycle outerface. See Fig. 1.17
and Fig. 1.12 for illustrations.

i

a2

a1

a1

a2

c0

c1

c2

c3

0

j

0

|σ|m− 1

|σ|m− 1

(i, j)

Figure 1.17: The polygonal embedding Uσ,m for m = 2 and σ = a1a2a1a2, a non-
canonical signature for a non-orientable surface of genus 2. Its size is (2, 28). The
cycle outerface is c0 − (0, 0)− (1, 1)− c1 − (2, 2)− (3, 3)− c2 − (4, 4)− (5, 5)− c3 −
(6, 6)− (7, 7)− c0.

Clearly, the number of internal vertices of Uσ,m is n = 1 + 2 + · · · + |σ|m− 1.
By merging the twin sides of Uσ,m to obtain sewing(Uσ,m), we destroy at least half
of the vertices of the cycle outerface of Uσ,m. It follows that sewing(Uσ,m) has no
more than n + |σ|(m + 1)/2 vertices. However, depending on the signature, this
number can be lower as the set of corners may collaps even more when merging
the sides. E.g., if the signature is minimal, i.e., comes from a system of loops,
sewing(Uσ,m) has only n + |σ|m/2 + 1 vertices since such a signature tell us that
all the corners are twins, resulting into the single vertex of the system of loops.

To summarize, we have:

Claim 1.3.11. The embedding Uσ,m is a polygonal embedding of signature σ with
1
2
|σ|m · (|σ|m − 1)) internal vertices, each of the |σ| sides having m non-corner

vertices. In particular, sewing(Uσ,m) has no more than 1
2
(|σ|2m2 + |σ|) vertices,

and at most 1
2
|σ|2m2 + 1 vertices if σ is minimal.

Structure of graphs: minors and induced trees 59



1.3. Universal graph for bounded genus graphs

Let Π be a polygonal embedding of size (m, 0). Up to taking a p-major of Π,
we can suppose that each side of Π is composed of exactly m non-corner vertices.
If needed, one can subdivide an edge and its twin of any too small side, resulting
in a p-major of Π. So, w.l.o.g., the cycle outerface of Π is composed of |σ(Π)|
sides of m non-corner vertices each.

Since Π is outerplane, its cycle outerface contains all its vertices. The embed-
dings Π and Uσ(Π),m have same signature and also m non-corner vertices per side.
So both embeddings have isomorphic border and a cycle outerface of |σ(Π)|(m+1)
vertices.

We denote by (u0, . . . , u|σ(Π)|−1) the border of Π, and by v0, . . . , v|σ(Π)|m−1 its
non-corners vertices ordered clockwise around its cycle outerface so that this cycle
is

u0 − v0 − v1 − · · · − vm−1 − u1 − vm − · · · − vim−1 − ui − vim − · · ·

Up to taking a p-major of Π, we will assume that all inner faces of Π are triangu-
lated such that corners have degree two. For each non-corner vi, we define the two
indices a(i), b(i) such that {vk : k ∈ [a(i), b(i)]} is the minimal subset of vertices
containing vi and all its non-corner neighbors. Note that a(i) = i or b(i) = i is
possible. For technical reasons, we increase b(0) to b(0) = |σ(Π)|m.

In order to show that Π is a minor of Uσ(Π),m, we construct a witness of
Π in Uσ(Π),m with the property that it preserves its outerface and its border.
A witness for a minor Π in Uσ(Π),m is a collection {W (u)}u∈V (Π) of nonempty
pairwise disjoint subsets of vertices of Uσ(Π),m such that each set W (u) induces a
connected subgraph of Uσ(Π),m, and for each edge u−v of Π, W (u)∪W (v) induces
a connected component in Uσ(Π),m.

The witness of Π in Uσ(Π),m is defined by:

• W (ui) = {ci} for each corner ui; and
• W (vi) = {(i, j)} ∪ C(vi) ∪R(vi) for each non-corner vi,

where C(vi) = {(i, k) : k ∈ (a(i), i]} and R(vi) = {(k, i) : k ∈ [i, b(i))}.

Clearly, for corner vertices, W (ui) = {ci} fulfills all desired properties: non-
emptyness, disjointness and connectedness. For non-corner vertices, W (vi) induces
a connected components of Uσ(Π),m since it is the union of a column subpath C(vi)
and of a row subpath R(vi) of Uσ(Π),m intersecting in (i, i) (in the case where C(vi)
and R(vi) are not empty).

Let us check that W (vi) and W (vj) are pairwise disjoint (witness for corner and
non-corner are clearly disjoint). Assume j < i. A non-empty intersection is only
possible between C(vi) and R(vj). And, this can only occur at (i, j). Note that
the case j = 0 provides disjoint witnesses, since (i, 0) /∈ C(vi). If (i, j) ∈ C(vi),
then j ∈ (a(i), i], and thus vi has a neighbor va(i) with a(i) < j. If (i, j) ∈ R(vj),
then i ∈ [j, b(j)), and thus vj has a neighbor vb(j) with i < b(j). It follows that
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a(i) < j < i < a(j) and that va(i) − vi and vj − vb(j) is a pair of crossing edges,
which is impossible in the outerplanar embedding Π.

It remains to check that, for each u − v ∈ E(Π), W (u) ∪ W (v) induces a
connected graphs in Uσ(Π),m. We can restrict our attention to non-corner neigh-
bors, since for a corner ui, ci ∈ W (ui) have exactly two neighbors that are
(im− 1, im− 1) ∈ W (vim−1) and (im, im) ∈ W (vim) (indices modulo |σ(Π)|m).

So consider an edge vi− vj of Π with j < i. Let W (vi, vj) be the set of vertices
of the path connecting (i, i) ∈ W (vi) to (j, j) ∈ W (vj) inside the grid part of
Uσ(Π),m, and defined by

W (vi, vj) = {(i, i), (i, i+ 1), . . . , (i, j − 1) , (i, j), (i− 1, j), . . . , (j, j)} .

To show that W (vi)∪W (vj) induces a connected component in Uσ(Π),m, it suffices
to show that W (vi, vj) ⊆ C(vi) ∪ R(vj) since W (vi, vj) induces a path in Uσ(Π),m,
and C(vi) ⊂ W (vi) and R(vj) ⊂ W (vj). If (i′, j′) /∈ W (vi, vj) for some i′ ∈ [j, i) or
j′ ∈ [i, j), then the set {vk : k ∈ [a(i), b(i)]} cannot cover the non-corner neighbors
of vi or the set {vk : k ∈ [a(j), b(j)]} cannot cover the non-corner neighbors of vj. It
remains to check that (i, j) ∈ C(vi)∪R(vj), even if (i, j) /∈ C(vi) or (i, j) /∈ R(vj) is
possible. If j = 0, then we are done because b(0) = |σ(Π)|m and thus (i, 0) ∈ R(0).
We are also done if |i− j| = 1 since (i, i) ∈ W (vi) and (j, j) ∈ W (vj) are neighbors
in Uσ(Π),m. Since the inner faces of Π are triangulated, the edge vi − vj (that lies
inside Π since vi and vj are not consecutive in the cycle outerface) share a triangle
vi−vj−vk such that k /∈ [i, j], the case j = 0 and i = |σ(Π)|m−1 being excluded.
If k > i, then a(j) > i and (i, j) ∈ C(vj). If k < j, then b(i) > j and (i, j) ∈ R(vi).

We have therefore proved that W (vi, vj) ⊆ W (vi) ∪ W (vj) and that W (vi) ∪
W (vj) induces a connected component in Uσ(Π),m. It follows that Π is a minor
of Uσ(Π),m with same outerface, border and signature. By Property 1.3.5, Π is a
p-minor of Uσ(Π),m that completes the proof of Lemma 1.3.4.
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2.1 Introduction
A well-studied algorithmic problem on graph is the Maximum Independent
Set (MIS). A set of vertices is an independent set if all the vertices in the set are
pairwise non-adjacent. The MIS problem consists in finding an independent set
of maximum size in an input graph, as in Fig. 2.1.

This problem is one of the fundamental graph problems that are NP-
complete [Har82]. Moreover, MIS is one of the first problem that has been shown
to be NP-hard even to approximate [FGL+96].

However, this problem can be polynomially solved when restricted to certain
classes of graphs. A simple class where MIS, as well as most hard problems, is
polynomial is the class of trees.
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Figure 2.1: Example of a maximal (left) and a maximum (right) independent set
on the same graph.

Here are the ideas to design a simple linear algorithm that computes a maxi-
mum independent set in a tree, using dynamic programming. Let T be a tree and
choose a vertex r to be its root: for each vertex u, we denote by Tu the subtree of
T rooted in u. Let Su be a maximum independent set in Tu containing u, and S̄u

a maximum independent set in Tu not containing u. Let S ′
u be the largest set be-

tween Su and S̄u. Note that, with those definitions, S ′
r is a maximum independent

of T .
Observe that if u is a leaf, Su = {u} and S̄u = ∅. If u is not a leaf, let

v1, . . . , vk for some k be the children of u. Then Su = {u} ∪ S̄v1 ∪ · · · ∪ S̄vk , and
S̄u = S ′

v1
∪· · ·∪S ′

vk
. With those relations it is easy to deduce a linear algorithm that

starts from the leaves and computed recursively S̄u, S
′
u for each u. This algorithm

ends with the computation of S ′
r, which is a maximum independent set of the

whole tree T .
From this simple algorithm, we can derive a linear algorithm for graphs with

treewidth bounded by a constant as their structure is similar to that of a tree.
A natural question is to identify the other graph classes for which MIS is easy.

This question has been largely studied on hereditary 1 graph classes that exclude
a graph H (or a set of graphs H) as induced subgraph.

We take this in two main directions in this chapter: excluding certain cycles as
induced subgraph (see 2.1.1 and later 2.3), and excluding a small path as induced
subgraph (see 2.1.2 and 2.2).

2.1.1 Excluding cycle structures

Observe that the class of trees, and more generally the class of forests, is the class
of graph excluding all cycles as subgraph. Since MIS is easy in those classes, a
natural direction is to study graphs that exclude some cycles as induced subgraphs.

Recently, a polynomial-time algorithm for Maximum Independent Set
has been found for graphs that exclude all cycles of length at least 5 as sub-
graphs [ACP+18]. In fact, excluding only the odd cycles is sufficient to make MIS
solvable in polynomial time. This result has been extended to the graphs that
exclude a constant number of vertex-disjoint odd cycles [FJWY21].

1closed under taking induced subgraphs
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The Erdős-Pósa theorem [EP65] implies a similar result for the graphs that
exclude a constant number of disjoint-cycles. More precisely, this theorem states
that if a graph G does not have k vertex-disjoint cycles, then G admits a feedback
vertex set (i.e., a subset of vertices whose removal yields a forest) of size O(k log k),
hence treewidth O(k log k). As we saw previously, MIS is polynomial for graphs
of bounded treewidth.

The intuition behind the Erdős-Pósa theorem is that if there are not many
disjoint cycles, all the cycles are packed together and share vertices, so it does not
require many vertices to hit every cycle.

In what extent does this hold if we loosen the condition on the cycles? More
precisely, we say that two cycles are independent if they are vertex-disjoint and
there are no edges between them. A graph is said to be Ok-free if it does not
contain k independent cycles. In other words, the Ok-free graphs are the graphs
who do not have a disjoint union of k cycles as an induced subgraph.

Observe that the complete bipartite graphs are O2-free but have treewidth
linear in their order. We thus focus on Ok-free graphs that are sparse (in this
context, this means no Kt,t subgraph for some t).

Our result: Section 2.3 describes the results obtained with Marthe Bonamy,
Edouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Stéphan Thomassé
and Alexandra Wesolek [BBD+23].

Our main theorem is that sparse Ok-free graphs have treewidth at most log-
arithmic in the number of vertices. This is sharp as we exhibit family of O2-free
graphs without K3,3-subgraph and whose treewidth is logarithmic. In fact for our
main theorem, we prove something even stronger, we show that the size of the
feedback vertex set is logarithmic.

Since the treewidth is not constant, Courcelle’s theorem is not sufficient to
deduce that the Maximum Independent Set is polynomial on those graphs.
However, Pilipczuk gave a refinement of Courcelle’s theorem, and showed that
any problem expressible in Existential Counting Modal Logic (ECML) admits a
single-exponential fixed-parameter algorithm in treewidth [Pil11]. This implies
that a problem expressible in ECML can be solved in polynomial time on any
class with logarithmic treewidth. In particular, Maximum Independent Set
is expressible in ECML thus is polynomial for the sparse Ok-free graphs, as well
as several fundamental problems such as Minimum Vertex Cover, Minimum
Dominating Set, Minimum Coloring.

For the Ok-free graphs (without the sparse assumption), we come short to
prove that MIS is polynomial but not by much. We obtain a quasi-polynomial
time algorithm for MIS in general Ok-free graphs, which implies that this problem
is not NP-complete (assuming there is no complexity-theoretic collapse).
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A consequence to our main theorem is that testing if a graph is Ok-free with no
Kt,t-subgraph is polynomial. A recent work of Nguyen, Scott and Seymour [NSS22]
extends this results to Ok-freeness.

2.1.2 Finding a long induced path

Another direction in the study of MIS for H-induced-free graph is the study of
graphs excluding a small path. Indeed, MIS is polynomial for Pk-induced-free
graphs when k < 7 and quasi-polynomial for every fixed k [GL20]. This leads us
to study the length of a longest induced path in a graph.

Every induced path is a path, but does the existence of a long path in a graph
imply that of a long induced path? More precisely, for a graph family G, we want
to know if there is an increasing function f such that every graph of G with an
n-path has an induced path on f(n) vertices.

In general, this is false as shown by cliques and bicliques. However, Galvin,
Rival, and Sands showed in 1982 that there is such a function as soon as the
graphs exclude a biclique as a subgraph [GRS82, Theorem 4]. Unfortunately, this
function increase very slowly as their proof relies on the infinite Ramsey’s theorem
for 4-tuples, hence can be used mostly as an existential result, rather than one
providing accurate and tight bounds.

For a positive integer k, a graph G is said to be k-degenerate if every subgraph of
G (including G itself) has a vertex of degree at most k. Observe that G excludes
Kk,k as subgraph. A better lower-bound was given by Nešetřil and Ossona de
Mendez [NDM12, Lemma 6.4] in the case of k-degenerate graphs: there, a path of
order n implies the existence of an induced path of order at least log logn

log(k+1)
.

Arocha and Valencia exhibited an infinite family of outerplanar graphs (2-dege-
nerate) where the order of a longest induced path is at most logarithmic in the order
of the graph [AV00]. For several subclasses of G of k-degenerate graph (bounded
genus, some bounded treewidth subclasses), Esperet, Lemoine, and Maffray found
a (log n)Ω(1) lower bound for the order of a longest induced graph in a graph of
G with an n-path [ELM17]. Those results are recapitulated later in Table 2.1.
They conjectured that a (log n)Ω(1) lower bound should hold for the whole family
of k-degenerate graphs. This conjecture is widely open, even for k = 2.

ADDENDUM: During the writing of this thesis, Defrain and Raymond [DR23]
disproved the conjecture for k = 2, by finding a family of 2-degenerate graphs such
that for each n if a graph has an n-path, then all its induced paths have order
O((log log n)2).
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Our result: The Section 2.2 relates the advances made with Jean-Florent Ray-
mond [HR23] on this Conjecture.

Our first result is that every graph of pathwidth less than k that has a path of
order n also has an induced path of order at least 1

3
n1/k.

This result is then used to find (log n)Ω(1) lower bounds for the graphs of
treewidth less than k and then for the class of topological-minor-free graphs. The
latter class generalizes a lot of known classes, such as minor-closed graphs, graphs
of bounded genus, graphs of bounded treewidth, but also immersion-closed graph
class (like graphs of bounded cutwidth, carving width, or tree-cut width), and
graphs of bounded degree.
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2.2 Longest induced path

2.2.1 Overview

This section gives results on the following conjecture:

Conjecture 2.2.1 ([ELM17, Conjecture 1.1]). For every integer k there is a con-
stant d such that every k-degenerate graph that has a path of order n also has an
induced path of order at least (log n)d.

This conjecture is widely open, so we focus on subclasses of the class of k-
degenerate graphs.

Let G be a hereditary class of k-degenerate graphs. There is a function fG such
that every graph G with an n-path admits an induced path of order at least fG(n),
and fG(n) ⩾ log logn

log(k+1)
[NDM12]. The problem here is finding the most accurate

lower bound and upper bound for fG. For the lower bond, this can be formalized
as finding the biggest function f such that this statement holds:

(⋆) For every n ∈ N, if a graph in G has a path of order n, then it has an induced
path of order at least f(n).

The upper bond is obtained by exhibiting the smallest function f and an infinite
family of graphs in G, such that for each n ∈ N, there is a graph of this family
with an n-path and with no induced path of order f(n).

Class of graphs G Lower bound Upper bound
Outerplanar 2-connected: Ω(log n) [ELM17] O(log n) [AV00]

bounded genus Ω((log n)
1
2 ) [ELM17] 3 logn

log logn
[ELM17]

graphs with pw ⩽ k intervals graphs: Ω((log n)
1
k2 ) [ELM17] → n

2
k + 1

→ 1
3
n

1
k+1 (Theorem 2.2.2) (Theorem 2.2.11)

graphs with tw ⩽ k k-tree: 1
k log k

log n [ELM17] (k + 2)(log n)
2
k [ELM17]

k = 2:
(
1
2
− o(1)

)
log n [ELM17]

→ 1
4
(log n)

1
k (Theorem 2.2.3)

Topological-minor-free → (log n)
1

O(1) (Theorem 2.2.4) (log n)
1

Ω(1) [ELM17]
k-degenerate log logn

log(k+1)
[NDM12] (k + 2)(log n)

2
k [ELM17]

Table 2.1: Known upper and lower bounds on the order of a longest induced path
in a graph of G that has a path of length n.

The Table 2.1 sum up the known upper and lower bound of fG for several classes
G that interest us. The blue arrowed bounds are the new ones presented in this
section. Notice that since an upper bound for a class is obtained by exhibiting a
family of graphs from this class, then the upper bound holds for classes generalizing
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this class. In particular the upper bound for the graphs of bounded treewidth holds
for the class of topological-minor-free graphs and of degenerates graphs, for some
k.

In their paper, Esperet, Lemoine, and Maffray gave a Ω((log n)
1

(k)2 ) lower
bound for interval graphs of pathwidth a most k [ELM17, Theorem 4.1] Our first
result is a generalization of this result to graphs of bounded pathwidth, with an
exponential improvement of the bound.

Theorem 2.2.2. For every k ∈ N, if G is a graph of pathwidth less than k that
has a path of order n, then G has an induced path of order at least 1

3
n1/k.

Its proof consists in a simple win/win strategy. We identify an induced path
whose removal decreases the pathwidth of G. Then either this path is at least
as long as the bound promised by the statement and we are done, or its removal
decreases the pathwidth without decreasing the number of vertices much, and we
conclude by applying the induction hypothesis. Theorem 2.2.2 is complemented by
an upper-bound (that even holds for interval graphs) of n2/k+1 (Theorem 2.2.11),
showing that the exponential dependency in 1/k in our lower-bound above is un-
avoidable.

We then show that in a graph of small treewidth that has a large path there
is always (as a contraction) a graph of small pathwidth that has a long path.
This statement is used to obtain the following polylogarithmic bound for graphs
of bounded treewidth.

Theorem 2.2.3. For every k ∈ N, if G is a graph of treewidth less than k that
has a path of order n, then G has an induced path of order at least 1

4
(log n)1/k.

Esperet et al. [ELM17] constructed chordal graphs of clique number k (thus
treewidth k− 1) that have a path of order n and where no induced path has order
more than (k + 1)(log n)

2
k−1 (see upper bound for graphs of bounded treewidth in

Table 2.1). Therefore neither the logarithmic dependency in n nor the exponential
dependency in 1/k could be improved in our lower bound above.

The ideas developed in the proofs of Theorem 2.2.2 and Theorem 2.2.3 allowed
us to generalize their statement to this much more general setting. A graph class
is non-trivial if it is not the class of all graphs.

Theorem 2.2.4. For every non-trivial graph class G that is closed under taking
topological minors there is a constant d ∈ (0, 1) such that if a graph G ∈ G has a
path of order n, then G has an induced path of order at least (log n)d.

The proof deals separately with the different parts that compose graphs ex-
cluding a topological minor (as given by the structure theorem of Grohe and Marx
[GM15]) and then shows how they can be combined together. We actually prove
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a stronger statement than Theorem 2.2.4, namely that the same outcome holds
for all graphs that admit a tree decomposition where every torso is either almost
embeddable in a surface of bounded genus or has almost bounded degree (see
Theorem 2.2.28 for the formal statement).

In subsection 2.2.2 we give the necessary definitions, and preliminary results.
We prove Theorem 2.2.2 in Section 2.2.3 and Theorem 2.2.3 in Section 2.2.4.
Finally, Section 2.2.5 is dedicated to the proof Theorem 2.2.4.

Before giving the details of the proof, let us present some perspectives for those
results.

Open problems. A first direction for future work is to investigate how widely
the results proved in this paper could be generalized. What are the most general
graph classes where the conjecture holds?

Note that the bound we obtained in Theorem 2.2.2 is polynomial. An interest-
ing task could be to characterize hereditary classes where such a property holds.
Also, as mentioned in the introduction, Esperet et al. fond an Ω(log n) bound in
k-trees, while their upper-bound for graphs of treewidth at most k (see Table 2.1)
shows that such a bound where k does not appear in the exponent of log n does
not hold for graphs of treewidth at most k. This suggests that our results could
be improved in the restricted setting of edge-maximal graphs from the considered
classes.

Finally, a natural research direction about this problem is to obtain tight
bounds for our theorems, especially in the cases of bounded pathwidth or tree-
width. To the best of our knowledge, this question is also open for planar graphs,
and more generally graphs of bounded Euler genus (see Table 2.1).

2.2.2 Preliminaries

Remark 2.2.5. If G is a graph that has a path P of order n and X ⊆ V (G) is not
empty, then G−X has

1. at most |X|+ 1 connected components that contain a vertex of P ; and

2. a connected component that has a path of order at least n−|X|
|X|+1

⩾ n
2|X| − 1.

Long paths versus Hamiltonian paths. A Hamiltonian path in a graph G is
a path that visits all the vertices of G.

The statements of the results in subsection 2.2.1 follow the general form of (⋆).
In contrast, in the rest of the paper we work with statements of the following form
(for G a class of graphs):
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(⋆⋆) For every n ∈ N, if a graph of G has a Hamiltonian path and order n then it
has an induced path of order at least f(n).

Remark 2.2.6. For a hereditary graph class G, the statements (⋆) and (⋆⋆) are
equivalent. Given a graph G ∈ G with a path P of order n (as required by (⋆)),
it suffices to consider the induced subgraph G[V (P )] ∈ G to be able to apply
statement (⋆⋆). This shows that (⋆⋆) implies (⋆) and the other direction is trivial.

However the form (⋆⋆) is more convenient for the proofs because the induced
paths that we construct will never use vertices other than those of the path P
whose existence is assumed, so by using form (⋆⋆) we do not need to explicitly say
that we restrict our attention to G[V (P )].

Representations. To easily deal with graphs of bounded pathwidth or tree-
width (defined hereafter) we find it convenient to define tree representations, which
are objects that are closely related to tree decompositions, as we explain below.
Formally, a tree representation of a graph G is a pair T = (T, {Tv}v∈V (G)) such
that

1. T is a tree;

2. for every v ∈ V (G), Tv is a subtree of T , called the model of v;

3. for every edge (u, v) of G the subtrees Tu and Tv intersect.

When T is a path, we call T a path representation. If item (3) is strengthened
as follows

3’. (u, v) is an edge of G if and only if Tu and Tv intersect

then G is the intersubsection graph of the vertex sets of the subtrees {Tv}v∈V (G)

and it is a chordal graph2; if furthermore T is a path then G is an interval graph.
In this latter case we call T an interval representation of G to stress that it is an
interval graph. To avoid confusion between the vertices of G and T , we use the
synonym nodes to refer to vertices of T .

Tree representations and tree decompositions are closely linked, as we explain
now. For a tree representation T = (T, {Tv}v∈V (G)) of a graph G, we define for
every t ∈ V (T ) the bag at t as the following subset of V (G)

βT (t) = {v ∈ V (G) | t ∈ Tv}.
2Chordal graphs are usually defined as graphs with no induced cycle of order 4 or more.

They can be seen as intersubsection graphs of subtrees of a tree, as proved by Gavril [Gav74,
Theorem 3].
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We drop the subscript when there is no ambiguity. The width of a tree rep-
resentation T is maxt∈V (T ) |βT (t)| − 1. The treewidth of G is the minimum width
of any of its tree representations and the pathwidth of G is the minimum width of
any of its path representations. It can easily be seen that these definitions coincide
with the usual definitions for treewidth and pathwidth as, with the notation above,
(T, {β(t)}t∈V (T )) is a tree decomposition of G. We respectively denote by tw(G)
and pw(G) the treewidth and pathwidth of G.

The following is a consequence of items (2) and (3) of the definition of a tree
representation.

Remark 2.2.7. Let G be a graph with a tree representation (T, {Tv}v∈V (G)) and let
H be a connected subgraph of G. Then

⋃
v∈V (H) Tv is a (connected) subtree of T .

2.2.3 Induced paths in graphs of bounded pathwidth

In this subsection we show that the maximum function fk such that property (⋆)
holds for graphs of pathwidth less than k is such that 1

3
n1/k ⩽ fk(n) ⩽ n2/k + 1

(Theorem 2.2.2 and Theorem 2.2.11).
A caterpillar is a tree in which all the vertices are at distance at most one of

some path.

Lemma 2.2.8 (See [PT99, subsection 6]). Every connected graph of pathwidth at
most one is a caterpillar.

We will also use the following consequence of the Helly property of intervals
(see for instance [GGL95, subsection 2.5]).

Lemma 2.2.9. Suppose P = (P, {Pv}v∈V (G)) is a path representation of a graph
G and K is a clique of G. Then there is a node t ∈ V (P ) such that V (K) ⊆ βP(t).

We first prove Theorem 2.2.2, that we restate here for convenience.

Theorem 2.2.2. For every k ∈ N, if G is a graph of pathwidth less than k that
has a path of order n, then G has an induced path of order at least 1

3
n1/k.

Proof. We actually prove the following by induction on n and k, which is equivalent
to the desired statement according to Remark 2.2.6.

If G is a graph of order at least n and pathwidth less than k that has a
Hamiltonian path, then G has an induced path of order at least 1

3
n

1
k .

Note that the statement is vacuously true when k = 1 and n > 1 as there is no
connected graph with |G| ⩾ 2 and pw(G) = 0. When pw(G) = n−1 (thus k = n),
the graph is a clique and the order of its longest induced path is 2 ⩾ 1

3
n

1
k . In the
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cases where n ⩾ 2 and k = 2, G is a caterpillar, by Lemma 2.2.8. Every caterpillar
with a Hamiltonian path is a path, so the statement holds as G is already an
induced path and n ⩾ 1

3

√
n.

So we now assume that k ⩾ 3, n > k and that the statement holds for all
smaller values of k and n. We now show that it also true for k and n. We may
also assume that 1

3
n

1
k > 2 as otherwise any edge is an induced path of the required

order.
Let G be a graph that has a Hamiltonian path and such that |G| ⩾ n and

pw(G) < k. We fix a path representation R = (R, {Rv}v∈V (G)) of G of width less
than k and with no empty bag. Let u be a vertex of G such that Ru contains
one endpoint of R and let v be a vertex whose model contains the other endpoint;
possibly u = v. Let Q be an induced path in G between u and v. Observe that Q
may consist of a single vertex (when u = v) or of two vertices (when u and v are
adjacent). Otherwise, Q can be constructed by taking a shortest path between u
and v.

In the case where |Q| ⩾ 1
3
n

1
k we are done and Q is the desired path. So in the

rest of the proof we may assume that |Q| < 1
3
n

1
k . Let P be a Hamiltonian path of

G. The path Q intersects P in |Q| vertices thus removing Q from G cuts P into
at most |Q| + 1 subpaths, and the longest of them, that we call P ′, has an order
n′ that is at least n−|Q|

|Q|+1
. Let us consider G′ the graph induced by P ′ in G.

We now show that pw(G′) ⩽ k−1. For this we consider the path representation
R′ = (R, {Rw}w∈V (G′)) of G′. Let r ∈ R be a node such that |βR′(r)| is maximum.
From the definition we have βR′(r) ⊆ βR(r). By Remark 2.2.7, the definition of Q
and the fact that it is connected, we know that the union of the sets {Rw}w∈V (Q)

is equal to V (R). Therefore βR(r) contains a vertex of Q. This implies |βR(r)| >
|βR′(r)| and the claimed bound on the pathwidth of G′ follows.

The graph G′ has a Hamiltonian path (by definition), order n′ < n and path-
width at most k − 1. By induction, G′ admits an induced path Q′ of order at
least 1

3
n′ 1

k−1 . Recall that n′ ⩾ n−|Q|
|Q|+1

. Since |Q| < 1
3
n

1
k , we have n′ > n

1
3
n

1
k +1

− 1.

As we assume 1
6
n

1
k ⩾ 1 we deduce n′ > 2n

k−1
k − 1 ⩾ n

k−1
k . Therefore we have

|Q′| ⩾ 1
3
(n

k−1
k )

1
k−1 = 1

3
n

1
k . Since G′ is an induced subgraph of G, Q′ is also an

induced path of G so we are done.

As every interval graph of clique number k admits a path representation of
width less than k (given by its interval representation), we have the following
improvement of the bound given by Esperet et al. in Table 2.1

Corollary 2.2.10. For every k, n ∈ N, if G is an interval graph of order at least n
and clique number at most k that has a Hamiltonian path, then G has an induced
path of order at least 1

3
n

1
k .
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R

Ru1

Ru2

Ru3

Ru4

Ru5

Ru6

Ru7

(a) The interval representation of the graph Gn,3 with q = 7.

u7u6u5u4u3u2u1

(b) The graph Gn,3 with q = 7.

Figure 2.2: The construction of Theorem 2.2.11.

The following statement complements Theorem 2.2.2 and Corollary 2.2.10 by
giving an upper-bound on the order of induced paths one can guarantee in (inter-
val) graphs of bounded pathwidth.

Theorem 2.2.11. For every k, n ∈ N with 2 ⩽ k ⩽ n, there exists an interval
graph Gn,k with a Hamiltonian path of order at least n and clique number at most
k, such that every induced path of Gn,k has order at most n

2
k + 1.

Proof. The proof is by induction on n and k. When k = n, Gn,n is the clique on n

vertices, where every induced path has order at most 2, which is less than n
2
n +1.

When k = 2, Gn,2 is the (induced) path on n vertices, which again satisfies the
desired statement for every n ⩾ 2.

For any n ⩾ k, let q =
⌊
n

2
3 + 1

⌋
. When k = 3, Gn,3 is constructed from

a collection {Pi}i∈{1,...,q} of q paths, where for every i ∈ {1, . . . , q} the path Pi

has order i and an endpoint called ui, by connecting ui to all the vertices of Pi+1
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for every i ∈ {1, . . . , q − 1}. See Figure 2.2b for a depiction of a small case and
Figure 2.2a for an interval representation R = (R, {Rv}v∈V (G)) of it, where each
Rv is drawn below R respecting the x-axis.

We can see that at most 3 intervals intersect (Rui
and the intervals representing

two consecutive vertices of Pi+1 for each i), thus Gn,3 is an interval graph with
clique number 3.

The number of vertices of Gn,3 is
q∑

i=1

|Pi| = q(q+1)
2

⩾ n
2
3 (n

2
3+1)
2

since q ⩾ n
2
3 ,

which is greater than n. Gn,3 admits a Hamiltonian path starting in uq that, for
each i from q to 2, follows Pi from ui to its other endpoint, goes to ui−1, and
repeats the same process.

Let us now bound the maximum order of an induced path in Gn,3. Let Q be an
induced path of Gn,3 and let i denote the minimum integer such that Q has a vertex
from Pi; clearly Q has at most i vertices from this path. Let j ∈ {i+ 1, . . . , q}
and observe that every vertex of Pj has uj−1 as unique neighbor in {Pj′}j′<j. As
Q is induced we deduce that it contains at most one vertex of Pj. This holds for
each of the q − i paths of {Pj}j∈{i+1,...,q}, so we get the bound |Q| ⩽ q, as desired.
This concludes the proof for the case k = 3.

So we now take n > k ⩾ 4, and assume that Gn′,k′ is defined and satisfies the
statement for every k′ < k and n′ < n such that 2 ⩽ k′ ⩽ n′. To construct Gn,k,
we proceed as follows.

Let q =
⌊
n

2
k + 1

⌋
. If q ⩾ n then the graph Gn,k = Pq clearly satisfies the desired

statement. Otherwise, we set n′ =
⌈
n−q
q−1

⌉
; observe that n′ ⩾ 2. We construct Gn,k

from the disjoint union of a path Q = v1−· · ·−vq and q−1 copies H1, . . . , Hq−1 of
Gn′,k−2 by connecting vi and vi+1 to all vertices of Hi, for every i ∈ {1, . . . , q − 1}.

To show that Gn,k is an interval graph, we now provide an interval repre-
sentation of it (see Figure 2.3 for an illustration). By our induction hypoth-
esis, Hi admits an interval representation Mi = (M i, {M i

v}v∈V (Hi)) for every
i ∈ {1, . . . , q − 1}. Let M denote the concatenation of the paths M1, . . . ,M q−1.
That is, M is obtained from the disjoint union of these paths by adding an edge
between an endpoint of M1 and one endpoint of M2, from the other endpoint of
M2 to one endpoint of M3, and so on. Clearly

(
M,

⋃q−1
i=1{M i

v}v∈V (Hi)

)
is an inter-

val representation of the disjoint union of the Hi’s. For every i ∈ {2, . . . , q − 1},
let Mvi = M [V (M i−1) ∪ V (M i)] and let Mv1 = M1 and Mvq = M q−1. Ob-
serve that (M, {Mvi}i∈{1,...,q}) is an interval representation of Q. Furthermore,
M = (M, {Mui

}i∈{1,...,q} ∪
⋃q−1

i=1{M i
v}v∈V (Hi)) is an interval representation of Gn,k.

This proves that Gn,k is an interval graph.

The graph Gn,k is composed of the path Q on q vertices and q − 1 copies of
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path M1

repr. of H1

path M2

repr. of H2

path M3

repr. of H3

path M q−1

r. of Hq−1

. . .

path M

model of v1

model of v2

model of v3

model of v4 . . .

model of vq−1

. . .
m. of vq

Figure 2.3: The construction of an interval representation for Gn,k when k > 3.

Gn′,k−2 which have (by induction) at least n′ vertices each, so we have

|Gn,k| ⩾ q + (q − 1)n′

= q + (q − 1)

⌈
n− q

q − 1

⌉
⩾ n.

We now show that the clique number of Gn,k is at most k. Let K be a maximum
clique of Gn,k. By Lemma 2.2.9, there exists a node x of M such that K consists
of all vertices of G whose model (in M) contains x. Let j be such that x ∈ M j

(such a vertex exists by definition of M), we then have

V (K) = ( V (K) ∩ V (Q) ) ∪ ( V (K) ∩ V (Hj) ).

The first intersubsection has size at most 2 since Q is an induced path. Recall
that Hj is a copy of Gn′,k′ thus its clique number is at most k − 2. Therefore the
second intersubsection has size at most k − 2. We deduce |K| ⩽ (k − 2) + 2 = k.

Let us show that Gn,k has a Hamiltonian path. For every i, let Ri denote a
Hamiltonian path of Hi, which exists by induction hypothesis. By construction,
every vertex of Ri (in particular its endpoints) is adjacent to both vi−1 and vi in
Gn,k. Therefore v1 −R1 − v1 −R2 . . . vq−1 −Rq−1 − vq is a (Hamiltonian) path in
G.

We proved that Gn,k is an interval graph on at least n vertices, with clique
number at most k, and with a Hamiltonian path. In order to conclude the proof,
it remains to prove that G does not have an induced path longer than n2/k + 1.
Let P be an induced path of G of maximum length.

We first consider the case where |V (P ) ∩ V (Hi)| ⩾ 2 for some i. As for every
w ∈ V (Hi), N(w) \ V (Hi) = {vi−1, vi}, we deduce that V (P ) ⊆ V (Hi), otherwise
P would not be induced. By induction hypothesis we get |P | ⩽ n′ 2

k−2 +1. Observe
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that

n′ ⩽
n− q

q − 1
+ 1 (from the definition)

⩽
n

q − 1

⩽ n
k−2
k .

So |P | ⩽ n
2
k + 1, as required. We now consider the remaining case where |V (P )∩

V (Hi)| ⩽ 1 for all i. Notice that an internal vertex w of P cannot belong to Hi

for some i. Indeed the only neighbors of w outside Hi are vi−1 and vi, which are
adjacent. We then get the three following cases:

• either V (P ) does not intersect any Hi, in which case P = Q so |P | ⩽ n
2
k +1;

• or there is an i such that P starts at some vertex w ∈ V (Hi) and does
not intersect Hj for all j ̸= i, in which case P = w − vi − vi+1 . . . vq or
P = w − vi−1 − vi−2 . . . v1 and |P | ⩽ |Q| ⩽ n

2
k + 1;

• or there are two integers i, j with i < j such that P starts from some vertex
wi ∈ V (Hi) and ends at some vertex wj of V (Hj), in which case P =

wi − vi − vi+1 . . . vj−1 − wj and again |P | ⩽ |Q| ⩽ n
2
k + 1.

2.2.4 Induced paths in graphs of bounded treewidth

In this subsection we show that the maximum function fk such that property
(⋆) holds for graphs of treewidth less than k is such that fk(n) ⩾ 1

4
n1/k (Theo-

rem 2.2.3).
Let G be a graph and let T = (T, {Tv}v∈V (G)) be a tree representation of G.

The weight of a path P of T is the number of vertices v of G such that Tv intersects
P . The weight of a node x of T is the maximum weight of a path from x to a leaf
minus |βT (x)|, and is noted wT (x) (or w(x) when there is no ambiguity on the
tree representation).

It is well-known that the order of a tree is upper-bounded by a function of
its height and maximum degree. The following lemma extends this statement to
graphs of bounded treewidth that have a Hamiltonian path.

Lemma 2.2.12. Let k, w ∈ N and let G be a graph that has a Hamiltonian path.
If there is a tree representation of G of width less than k that has a node of weight
at most w, then |G| ⩽ (k + 1)w+1 − 1.
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Proof. Let k ∈ N. The proof is by induction on w.
If w = 0 then for every graph G and tree representation T as in the statement

of the lemma and x node of weight zero we have V (G) ⊆ βT (x) and there are at
most k vertices in βT (x) so the claimed bound holds. So we now suppose that
w ⩾ 1 and that the statement is true for every weight w′ < w.

We consider a graph G with a Hamiltonian path P and a tree representation
T = (T, {Tv}v∈V (G)) of width less than k that has a node x such that wT (x) ⩽ w.
Let us consider the graph G \ βT (x). Removing the at most k vertices of βT (x)
cuts P into t ⩽ k + 1 subpaths P1, . . . Pt. For each i, let Gi be the graph induced
by Pi and let Ti be the union of the Tv’s for v ∈ V (Gi). Then Ti is a subgraph of
T and by Remark 2.2.7 it is connected. Observe that Ti = (Ti, {Tv}v∈V (Gi)) is a
tree representation of Gi.

Let xi be the node of Ti that is the closest to x in T . Let wi be the weight of xi

in Ti and Qi a path in Ti of maximum weight from xi to a leaf l. Let us consider
the path Q in T from x to l; note that Qi is a subpath of Q. So xi belongs to
Q, and by construction of Ti, βTi(xi) is not empty and belongs to G \ βT (x) thus
there is at least one vertex in βT (xi) \ βT (x). This implies that wT (x) ⩾ wi + 1,
and thus wi ⩽ wT (x)− 1 ⩽ w − 1.

By construction, Gi admits a Hamiltonian path and we just proved that in
the tree representation (Ti, {Tv}v∈V (Gi)) of width less than k there is a node xi

of weight at most w − 1. By induction, Gi has at most (k + 1)w − 1 vertices.
As V (G) = βT (x) ∪

⋃t
i=1 V (Gi) with t ⩽ k + 1 and |βT (x)| ⩽ k we get |G| ⩽

(k + 1)((k + 1)w − 1) + k = (k + 1)w+1 − 1.

Corollary 2.2.13. In every tree representation of width less than k of a graph of
order n there is a node of weight at least logk+1(n+ 1)− 1.

In a graph G, the contraction of an edge (u, v) is the operation that creates
a new vertex w adjacent to the neighbors of u and v and then deletes u and v.
We say that a graph H is a contraction of a graph G if H can be obtained from
G after a (possibly empty) sequence of edge contractions. In the sequel we use
Corollary 2.2.13 to extract a graph with a long path and bounded pathwidth from
a graph with a large path and bounded treewidth. The obtained graph will be a
contraction of the original one, which is interesting for us because of the following
property.
Remark 2.2.14. Let H be an induced subgraph or a contraction of a graph G. If
H has an induced path of order n, then so does G.

Lemma 2.2.15. Let k, w ∈ N and let G be a graph that has a Hamiltonian path
and order n. If G admits a tree representation of width less than k that has a path
of weight w, then there is a contraction of G that has a Hamiltonian path and is
of order w and pathwidth less than k.
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Proof. Let T = (T, {Tv}v∈V (G)) be the tree representation as in the statement of
the lemma and R the path of T of weight w. Let P be a Hamiltonian path of G.
We prove the statement by induction on the number p of vertices v of G such that
V (Tv) ∩ V (R) = ∅. In the case p = 0, for every vertex v ∈ V (G) the subtree Tv

intersects R. By the properties of tree representations, we have:

• for every v ∈ V (G), V (Tv)∩ V (R) induces a (connected) subpath of R, that
we call Rv; and

• for every u, v ∈ V (G), Tu and Tv share a vertex if and only if they share a
vertex of R.

Therefore (R, {Rv}v∈V (G)) is a path representation of G. Clearly it has w vertices
and width less than k hence we are done.

So we may assume in the sequel that p > 0 and that the statement holds for
all values smaller than p. As p > 0 and P is a Hamiltonian path, there is an edge
(u, v) ∈ E(P ) such that Tu intersects R while Tv does not. Let us consider the
graph G′ obtained by contracting (u, v) into a new vertex y and setting Ty = Tu∪Tv

(which is connected as Tu and Tv intersect). We call T ′ = (T, {Tz}z∈V (G′)) the
corresponding tree representation. Observe that for every t ∈ V (T ), we have
βT ′(t) = βT (t) if t /∈ Tu∪Tv and βT ′(t) = βT (t)\{u, v}∪{y} otherwise. Therefore
the width of T ′ is less than k. Also, observe that the weight of R in T ′ is still w.
Applying the induction hypothesis on G′ yields the desired result.

We are now ready to prove Theorem 2.2.3, that we restate here for convenience.

Theorem 2.2.3. For every k ∈ N, if G is a graph of treewidth less than k that
has a path of order n, then G has an induced path of order at least 1

4
(log n)1/k.

Proof. The statement that we actually prove is the following, which implies the
desired statement according to Remark 2.2.6.

For every k, n ∈ N, if G is a graph of order at least n and treewidth less than
k that has a Hamiltonian path, then G has an induced path of order at least
1
4
(log n)1/k.

Let k, n, and G be as in the statement above. The cases n ⩽ 2 or k ⩽ 2 are
trivial and the case n = k is handled by Theorem 2.2.2 (as then G has pathwidth
at most k), so we suppose n > k ⩾ 3.

By combining Corollary 2.2.13 and Lemma 2.2.15 we obtain a contraction G′

of G of order at least logk+1(n + 1) with pathwidth less than k and that has a
Hamiltonian path.
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By Theorem 2.2.2, G′ admits an induced path Q of order

|Q| ⩾ 1

3
(logk+1(n+ 1))

1
k ⩾

1

3 · c
(log(n+ 1))1/k

where c < 1.3 is the maximum of the function k 7→ log(k+1)1/k. By Remark 2.2.14
we deduce that G has an induced path of the same order and we are done.

2.2.5 Induced paths in topological minor-closed classes

In this subsection we use the decomposition theorem of Grohe and Marx for graphs
excluding a topological minor (Theorem 2.2.29 in this paper) in order to prove
Theorem 2.2.4. According to Grohe and Marx’ result, such graphs admit tree
decompositions where the bags3 are required to come from some prescribed graph
classes.

We first show that (⋆) holds with a polylogarithmic bound for graphs from
these classes (subsections 2.2.5 and 2.2.5) and then that it does too in tree repre-
sentations where, intuitively, the interaction between bags is low (subsection 2.2.5).
These results are combined in subsection 2.2.5 to finally prove Theorem 2.2.4.

Almost bounded degree graphs

Let ∆, k ∈ N. We say that a graph G has (k,∆)-almost bounded degree if G has
a set of at most k vertices whose removal yields a graph of maximum degree at
most ∆. In this subsection we show that such graphs satisfy property (⋆) with a
logarithmic bound (that depends on k and ∆), that is the following lemma.

Lemma 2.2.16. For every ∆, k ∈ N there is a constant c ∈ R+ such that if a graph
with (k,∆)-almost bounded degree has a path of order n, then it has an induced
path of order at least c log n.

This result is a direct consequence of Corollary 2.2.18 (for deleting a constant
number of vertices) and Corollary 2.2.20 (for graphs of bounded degree) that we
prove below. They actually follow from more general statements, that we leave
here as they may be useful in order to prove Conjecture 2.2.1.

Lemma 2.2.17. Let G be a hereditary class of graphs such that for some c, d ∈ R+,
if a graph G ∈ G has a Hamiltonian path and order n, then G has an induced path
of order at least c(log n)d.

Let ε ∈ (0, 1) and let Gε denote the class of graphs such that for every G ∈ Gε

there is a subset X ⊆ V (G) of at most nε vertices such that G − X ∈ G. Then

3Actually the torsos, to be defined in one of the following subsections.
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there is a constant c′ ∈ R+ depending on c, d, and ε such that if a graph G ∈ Gε

has a Hamiltonian path and order n, then G has an induced path of order at least
c′(log n)d.

Proof. Let G ∈ Gε and let P be a Hamiltonian path of G. We may assume n ⩾ 3
otherwise P is already an induced path of the desired length. Let X ⊆ V (G)
be such that G − X ∈ G and 1 ⩽ |X| ⩽ nε, which exists by definition of Gε.
By Remark 2.2.5, G − X has a component H with a path of order at least n′ =
n−|X|
|X|+1

⩾ n
2|X| − 1. As G is hereditary, H ∈ G so it has an induced path of order at

least

c(log n′)d ⩾ c

(
log

(
n1−ε

2
− 1

))d

⩾ c′(log n)d

for a suitable choice of the constant c′ > 0 (depending on c, d, and ε). This path
is an induced subgraph of G (by Remark 2.2.14) so we are done.

Corollary 2.2.18. Let G be a hereditary class of graphs such that for some c, d ∈
R+, if a graph G ∈ G has a Hamiltonian path and order n, then G has an induced
path of order at least c(log n)d.

Let k ∈ N and let Gk denote the class of graphs such that for every G ∈ Gk

there is a subset X ⊆ V (G) of order at most k vertices such that G−X ∈ G. Then
there is a constant c′ ∈ R+ depending on c, d, and k such that if a graph G ∈ Gk

has a Hamiltonian path and order n, then G has an induced path of order at least
c′(log n)d.

Lemma 2.2.19. Let c ∈ R+, d ∈ [0, 1). Let G be the class containing every graph
G with maximum degree at most 2c(log |G|)d. If a graph G ∈ G has a Hamiltonian
path and order n, then G has an induced path of order at least 1

c
(log n)1−d.

Proof. Let P be a Hamiltonian path of G. Let Q be an induced path of G of
maximum order and let u be one of its endpoints. Let q = |Q|. For every i ∈
{0, . . . , q − 1}, let Di denote the set of vertices at distance exactly i from u. As
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Di ⊆ N(Di−1) for every i ∈ {1, . . . , q − 1} we get |Di| ⩽ |Di−1|·2c(logn)
d . Therefore

n =

q−1∑
i=0

|Di| (by maximality of Q)

⩽
q−1∑
i=0

(
2c(logn)

d
)i

⩽
(
2c(logn)

d
)q

so q ⩾
1

c
(log n)1−d.

The following corollary about graph classes of degree bounded by a constant
∆ can be obtained from the previous lemma by taking c = log(∆) and d = 0.

Corollary 2.2.20. Let ∆ ∈ N. Every graph with maximum degree at most ∆ that
has a Hamiltonian path and order n has an induced path of order at least logn

log∆
.

Escaping the vortices

Similar to the concept of tree representation, we can define a cycle representation
of a graph G as a pair C = (C, {Cv}v∈V (G)) such that:

1. C is a cycle;

2. for every v ∈ V (G), Cv is a connected subgraph of C; and

3. for every edge (u, v) of G the subgraphs Cu and Cv intersect.

The notions of bag and width of a cycle representation are defined similarly as for
tree representations.

Let G0 be a graph embedded in a surface Σ. Let C be a facial cycle of G0. A
C-vortex is a cycle representation (C, {Cv}v∈V (H)) of a graph H such that V (H)∩
V (G0) = V (C) and v ∈ Cv for every v ∈ V (C). Note that C is both a subgraph
of H and the graph where the representation of H is defined.

For g, p, a, k ∈ N, a graph G is (g, p, a, k)-almost-embeddable if for some set
A ⊆ V (G) with |A| ⩽ a there are graphs G0, . . . , Gs with s ⩽ p such that

1. G− A = G0 ∪G1 ∪ · · · ∪Gs;

2. G1, . . . , Gs are vertex-disjoint;

3. G0 can be embedded in a surface of Euler genus at most g;

84 C. Hilaire



Contents

4. there are s pairwise vertex-disjoint facial cycles F1, . . . , Fs of G0 in this em-
bedding, and

5. for every i ∈ {1, . . . , s}, Gi has an Fi-vortex of width less than k.

This notion was introduced for the purpose of the proof of the Graph Minor
Structure Theorem of Robertson and Seymour [RS03] and is also used in the
decomposition theorem of Grohe and Marx on which we rely.

For (g, 0, 0, 0)-almost embeddable graphs, which by definition are graphs of
Euler genus at most g, property (⋆) is known to hold with a polylogarithmic
bound as proved by Esperet et al. (Table 2.1). We state here their theorem for
convenience:

Theorem 2.2.21 ([ELM17, Theorem 3.8]). For every g ∈ N there is a constant
c = 1

2
√
6
− o(1) such that for every graph G embeddable in a surface with Euler

genus at most g, if G has a Hamiltonian path and order n, then G has an induced
path of order at least c

√
log n.

We use this result as a base case to show the following more general statement.

Lemma 2.2.22. For every g, p, a, k ∈ N with k ⩾ 2 there is a constant c such
that the following holds. If G is a (g, p, a, k)-almost-embeddable graph that has
a Hamiltonian path and order n, then G has an induced path of order at least
c (log n)

1
k .

Proof. We may assume that n ⩾ 3 otherwise the statement is trivial. Let us first
assume that a = 0. In the case where p = 0 then G has Euler genus at most g and
the result follows from Theorem 2.2.21. So we assume that p ⩾ 1. Let G0, . . . , Gs

and F1, . . . , Fs be defined as above.
Suppose first that for some i ∈ {1, . . . , s}, |Fi| ⩾ (k + 1)(log n + 1). Let

C = (Fi, {Cv}v∈V (Gi)) be an Fi-vortex of Gi of width less than k (given by the
definition of (g, p, a, k)-almost-embeddable graphs). Let u ∈ V (Fi). The bag
βC(u) has size at most k so some connected component of Fi \ βC(u) contains a
subpath F of Fi of order at least log n. Let H = G[V (F )]. This graph has F as a
Hamiltonian path. Observe that by definition of F , no model (in C) of a vertex of
F contains u. In other words, the models of the vertices of F are all subpaths of
Fi \ {u}. Hence (Fi \ {u}, {Cv}v∈V (H)) is a path representation of width less than
k of H. By Theorem 2.2.2 we get an induced path of order at least 1

3
(log n)1/k in

H hence in G. We are not completely done yet but let us now consider the second
case before concluding.

In the second case we assume that |Fi| < (k + 1)(log n + 1) for every i ∈
{1, . . . , s}. This implies that |Gi| < k(k+1)(log n+1). Let X =

⋃s
i=1 V (Gi), then

1 ⩽ |X| < pk(k + 1)(log n+ 1).
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By Remark 2.2.5, G−X has a connected component G′ that has a Hamiltonian
path and order n′ where n′ ⩾ n

2|X| − 1. So n′ ⩾ nε for some constant ε ∈ (0, 1)
that depends on p and k only.

Because it is a subgraph of G0, the graph G′ has Euler genus at most g. Ap-
plying Theorem 2.2.21 there is a constant cg depending on g only such that G′

(hence G) has an induced path of order q at least

q ⩾ cg
√

log n′

⩾ cg
√
ε
√
log n

⩾ cg
√
ε(log n)1/k as k ⩾ 2.

Let c = min(1/3, cg
√
ε). In both cases we obtained an induced path of order

at least c(log n)1/k, as claimed.
The case where a ⩾ 1 follows from Corollary 2.2.18 applied to the case where

a = 0. This concludes the proof.

Representations of bounded adhesion

In this subsection we build upon the ideas developed in subsections 2.2.3 and 2.2.4
to show that, roughly, if G is a class of graphs where (⋆) holds with a polyloga-
rithmic bound then the same can be said of graphs obtained by gluing together in
a tree-like fashion graphs from G (Lemma 2.2.27). This is a crucial step towards
the proof of Theorem 2.2.4.

Let T = (T, {Tv}v∈V (G)) be a tree representation of a graph G. The adhesion
set of an edge (t, t′) of T is defined as the following subset of V (G):

adhT (t, t
′) = {v ∈ V (G) | {t, t′} ⊆ V (Tv)}.

Equivalently, it can be defined as the intersubsection of the bags at t and t′, that
is adhT (t, t

′) = βT (t) ∩ βT (t
′). We drop the subscript when it is clear from the

context. The adhesion of T is the maximum size of the adhesion set of an edge
of T . For every t ∈ V (T ), the torso of T at t is the graph obtained from G[β(t)]
by adding all edges (u, v) such that u, v ∈ adhT (t, t

′) for some neighbor t′ of t. If
for every t ∈ V (T ), the torso of T at t belongs to some graph class G, we say that
T has torsos from G.

Torsos and adhesion sets provide two different ways to restrict tree representa-
tions. Observe that graphs of treewidth (respectively pathwidth) less than k are
simply graphs that admit a tree representation (respectively path representation)
with torsos from the class of graphs of order at most k. For every graph class G
and integer a, we respectively denote by PR(G, a) and TR(G, a) the class of graphs
that admit a path representation or a tree representation with torsos from G and
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adhesion less than a. We denote by TR(G) the class of graphs that admit a tree
representation with torsos from G and no restriction on the adhesion. Notice that
if the graphs in G have cliques of bounded order, the adhesion of tree represen-
tations of graphs from TR(G) is implicitly bounded (i.e. TR(G) ⊆ TR(G, a) for
some a ∈ N ).

The next remark easily follows from the definition of tree representations.
Remark 2.2.23. Let T = (T, {Tv}v∈V (G)) be a tree representation of a graph G, let
(t, t′) ∈ E(T ) and let F, F ′ be the two connected components of T \ {(t, t′)}. Let
u and u′ be such that V (Tu) ∩ V (F ) ̸= ∅ and V (Tu′) ∩ V (F ′) ̸= ∅. Then either
one of u, u′ belongs to adhT (t, t

′), or G \ adhT (t, t
′) has no path from u to u′.

For the purpose of the proof of Lemma 2.2.27 we need to relate the order of a
graph with the length of a path where it is represented. It is not true in general
that the existence of a path representation with a long path implies that the
represented graph is large; for instance all the bags in this representation could be
identical and small. We show below (Lemma 2.2.24) that such a statement holds
if we require the considered path representation to satisfy an extra property, being
varied, that we define now.

Let T = (T, {Tv}v∈V (G)) be a tree representation of a graph G. For an edge
(t, t′) in T , the tree representation (T ′, {T ′

v}v∈V (G)) obtained from T by contracting
(t, t′) is defined as follows:

• T ′ is obtained from T by contracting (t, t′);

• for every v ∈ V (G), T ′
v = Tv if {t, t′} ∩ Tv = ∅,

and T ′
v = Tv \ {t, t′} ∪ {t′′} otherwise.

Intuitively, we merge the nodes t and t′ both in the tree of the representation and
in the models of the vertices.

Let us say that T is varied if no bag is a subset of a neighboring bag, i.e. for
every (t, t′) ∈ E(T ), β(t) ⊈ β(t′). In particular, unless G has no vertex, no bag is
empty.

Given a tree representation T = (T, {Tv}v∈V (G)), it is possible to produce a
varied tree representation by iteratively contracting in T the edges (t, t′) such that
β(t) ⊆ β(t′). Observe that this process changes neither the width or the adhesion
of T nor the fact that it has bags from some specific class of graphs.

Lemma 2.2.24. Let G be a graph on at least one vertex. If R = (R, {Rv}v∈V (G))
is a varied path representation of G, then |G| ⩾ |R|.

Proof. We prove the following statement by induction on ℓ.

For every ℓ ∈ N+, if a graph G on at least one vertex admits a varied path
representation on a path of order ℓ, then |G| ⩾ ℓ.
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The case ℓ = 1 is trivial as we require that G is not empty. So let us assume that
ℓ > 1 and that the statement holds for smaller values. Let G be a graph that admits
a varied path representation R = (R, {Rv}v∈V (G)) with |R| = ℓ, and let r1 . . . rℓ be
the vertices of R in the order of the path. Let G− = G[β(r1)∪· · ·∪β(rℓ−1)]. As R
is varied, β(r1) ̸= ∅ so G− has at least one vertex. Observe that it admits a varied
path representation with ℓ− 1 nodes (for instance (R \ {rℓ}, {Rv}v∈V (G−))), so by
induction it has at least ℓ− 1 vertices. As R is varied, there is a vertex v ∈ β(rℓ)
that does not belong to β(rℓ−1). This vertex does not belong to G− either (as Rv

is connected) so |G| ⩾ ℓ, as claimed.

The above lemma allows us to prove the following variant of Theorem 2.2.2 on
varied path representations of bounded adhesion.

Lemma 2.2.25. Let G be a graph that has a Hamiltonian path. If G admits a
varied path representation with adhesion less than a and at least ℓ nodes, then G
has an induced path of order at least 1

3
ℓ

1
2a .

Proof. Let R = (R, {Rv}v∈V (G)) be a path representation as in the statement. For
every r ∈ V (R), let Zr be a subset of V (G) of minimum size such that for every
neighbor r′ of r, adh(r, r′) ⊆ Zr and there is a vertex v ∈ Zr that does not belong
to β(r′). Let us show that this set is well-defined and small. Either the bag at r
has a vertex v that does not appear in the bags of any of its neighbors, in which
case {v}∪

⋃
r′∈N(r) adh(r, r

′) satisfies the above properties, or it does not and then
β(r) is suitable, as R is varied. Observe that in this case β(r) =

⋃
r′∈N(r) adh(r, r

′).
Recall that in R the vertex r has up to two neighbors. So in both cases we have
|Zr| ⩽ 2(a− 1) + 1 = 2a− 1.

Let P be a Hamiltonian path of G. An edge of P is called superfluous if it has
at least one endpoint outside

⋃
r∈V (R) Zr.

Remark 2.2.26. Suppose that (x, y) is a superfluous edge and let G′ be the graph
obtained by contracting (x, y) into a new vertex z. Then R′ = (R, {Rv}v∈V (G′)) is
a path representation of G′ (with Rz = Rx ∪ Ry). We show that additionally R′

is a varied representation. Towards a contradiction, let us assume that there are
r, r′ ∈ V (R) such that βR′(r) ⊆ βR′(r′). Then for one of x and y, say x, we have
βR(r) \ βR(r

′) = {x}, which implies y ∈ adhR(r, r
′) (as (x, y) is an edge). We just

proved that x, y ∈ Zr, which is a contradiction with the choice of (x, y). So R′ is
varied.

Let H be the graph obtained from G after iteratively contracting all the super-
fluous edges and let RH = (R, {Rv}v∈V (H)) be the corresponding varied path rep-
resentation constructed as in the above remark. By Lemma 2.2.24, |H| ⩾ |R| ⩾ ℓ.
All the edges that were contracted did belong to P so H has a Hamiltonian path.
No edge of H is superfluous (by definition) so for every r ∈ V (R), βRH

(r) = Zr.
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Therefore RH is a path representation of H of width at most 2a − 1. Apply-
ing Theorem 2.2.2 to H we get an induced path of order at least 1

3
ℓ

1
2a . As H is

a contraction of G, such a path also exists in G (Remark 2.2.14) hence we are
done.

A graph class is said to be closed under taking subgraphs if every subgraph of
a graph of the class also belongs to the class. We are now ready to prove the main
result of this subsection.

Lemma 2.2.27. Let a ∈ N+, c ∈ (0, 1/3] and d ∈ (0, 1]. Let G be a class of
graphs that is closed under taking subgraphs and such that for every n ∈ N, every
G ∈ G that has a Hamiltonian path and order n has an induced path of order at
least c(log n)d.

If a graph G of TR(G, a) has a Hamiltonian path and order n, then it has an

induced path of order at least c(log n)
1

4a+1
d .

Proof. Let T = (T, {Tv}v∈V (G)) be a varied tree representation of G witnessing
that G ∈ TR(G, a). Let us fix ε = 4ad

4ad+1
< 1. Observe that we may assume

c(log n)
1

4a+1
d > 2 (2.1)

as otherwise the statement holds trivially. Let P be the Hamiltonian path of G.
Let us first suppose that T has a node t such that the bag β(t) has order at least

n
1

(logn)ε . Let H denote the graph obtained from G by iteratively contracting every
edge of P that has at least one endpoint outside β(t). By construction, H is a
supergraph of G[β(t)] of the same order and every edge (u, v) ∈ E(H)\E(G[β(t)])
is such that u, v ∈ adhT (t, t

′) for some neighbor t′ of t. Therefore, H is a subgraph
of the torso of T at t. As G is subgraph-closed, we deduce H ∈ G. Besides, these
contractions were applied to edges of P so they yield a Hamiltonian path in H.
By the properties of G we deduce that H has an induced path of order at least

c
(
log n

1
(logn)ε

)d

= c(log n)(1−ε)d

= c(log n)
1

4a+1
d .

Such a path also exists in G (Remark 2.2.14) so we are done.
So we may assume now that at every node t of T we have

|β(t)| < n
1

(logn)ε , (2.2)

which implies
|T | ⩾ n

n
1

(logn)ε
= n1− 1

(logn)ε . (2.3)
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Let t ∈ V (T ). As T is varied, for every neighbor t′ of t there is a vertex
vt′ ∈ β(t′) of G such that vt′ /∈ β(t). Let Gt′ denote the connected component of
G \ β(t) that contains vt′ . Then for every neighbor t′′ ̸= t′ of t, the components
Gt′ and Gt′′ are distinct, by the properties of tree representations. So G \ β(t) has
at least degT (t) connected components. By (2.2) and Remark 2.2.5, G \ β(t) has
at most |β(t)| + 1 connected components. We deduce that the maximum degree
∆ of T is bounded as follows

∆ ⩽ n
1

(logn)ε + 1

⩽ 2n
1

(logn)ε . (2.4)

Let R denote a path of maximum order in T . From the classic inequality
|T | ⩽ ∆|R|−1 we get

|R| − 1 ⩾
log |T |
log∆

⩾
log n− (log n)1−ε

(log n)1−ε + 1
from (2.3) and (2.4)

⩾
1

2
((log n)ε − 1) from (2.1)

so |R| ⩾ 1

2
(log n)ε

⩾ (log n)ε/2 from (2.1).

As in the first part of the proof we iteratively contract the edges of P that do
not have both endpoints in

⋃
t∈V (R) β(t) in order to produce a graph H that has a

Hamiltonian path and a varied path representation (R, {Rv}v∈V (H)) with adhesion
less than a. We can now apply Lemma 2.2.25 to get an induced path of order at
least

1

3
|R|

1
2a ⩾

1

3
(log n)

ε
4a

⩾ c(log n)
1

4a+1
d as c ⩽

1

3
.

Again such a path also exists in G and we are done.

Piecing things together

We are now ready to prove the following theorem from which will follow Theo-
rem 2.2.4.
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Theorem 2.2.28. Let k ∈ N and let Gk denote the class of graphs that either
are (k, k, k, k)-almost embeddable or have (k, k)-almost bounded degree. There are
constants c ∈ R+ and d ∈ (0, 1) such that if a graph G ∈ TR(Gk) has a Hamiltonian
path and order n, then G has an induced path of order at least c(log n)d.

Proof. Observe that a (k, k)-almost bounded degree graph does not contain a clique
of order 2k+2. Also there is a k′ ∈ N such that no (k, k, k, k)-almost embeddable
graph contains a clique of order k′ (see for instance [DMW17, Lemma 21] for a
linear upper-bound in terms of k). So for a = max(2k + 2, k′) we have TR(Gk) ⊆
TR(Gk, a). By Lemma 2.2.22 and Lemma 2.2.16 the class Gk satisfies (⋆) with the
function n 7→ c′(log n)d

′ for some constants c′ ∈ R+ and d′ ∈ (0, 1) depending on k.
Also, notice that Gk is closed under taking subgraphs. Together with Lemma 2.2.27
this implies that TR(Gk, a) (hence TR(Gk)) satisfies (⋆) with the function n 7→
c(log n)d for some constants c ∈ R+ and d ∈ (0, 1) depending on k.

Theorem 2.2.4 is a consequence of Theorem 2.2.28 and the structure theorem
of Grohe and Marx for graphs excluding a topological minor, stated hereafter in
the setting of tree representations.

Theorem 2.2.29 ([GM15]). For every graph H there is an integer k ∈ N such
that every graph not containing H as a topological minor has a tree representation
(T, {Tv}v∈V (G)) such that for every t ∈ V (T ) the torso at t is either (k, k, k, k)-
almost embeddable or has (k, k)-almost bounded degree.
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2.3 Largest induced forest

2.3.1 Overview

The main technical contribution in this section is the following.

Theorem 2.3.1. Any t-biclique-free Ok-free graph on n vertices has a feedback
vertex set of size Ot,k(log n).

Since a graph with a feedback vertex set of size k has treewidth at most k+1,
this implies a corresponding result on treewidth.

Corollary 2.3.2. Every t-biclique-free Ok-free graph on n vertices has treewidth
Ot,k(log n).

We complement this result by exhibiting an infinite family of 3-biclique-free
O2-free graphs with treewidth logarithmic in the order of the graph.

Corollary 2.3.2 implies that a number of fundamental problems, in particular
MIS, can be solved in polynomial time in sparse Ok-free graphs. In particular,
this proves that MIS can be solved in polynomial time in the sparse regime.

When dropping the sparse assumption, we obtain a quasi-polynomial time al-
gorithm:

Theorem 2.3.3. For every positive integer k, Maximum Independent Set can
be solved in quasi-polynomial time nO(k2 logn) in n-vertex Ok-free graphs.

Organization of the section. In Section 2.3.2, we prove that Theorem 2.3.1
and Corollary 2.3.2 are tight already for k = 2 and t = 3. Section 2.3.3 solves MIS
in Ok-free graphs in quasi-polynomial time, among other algorithmic applications
of Corollary 2.3.2.

The proof of our main structural result, Theorem 2.3.1, spans from Section 2.3.4
to Section 2.3.8. After some preliminary results (Section 2.3.4), we show in Sec-
tion 2.3.5 that it suffices to prove Theorem 2.3.1 when the graph G has a simple
structure: a cycle C, its neighborhood N (an independent set), and the remaining
vertices R (inducing a forest). Instead of directly exhibiting a logarithmic-size
feedback vertex set, we rather prove that every such graph contains a vertex of
degree linear in the so-called “cycle rank” (or first Betti number) of the graph. For
sparse Ok-free graphs, the cycle rank is at most linear in the number of vertices
and decreases by a constant fraction when deleting a vertex of linear degree. We
then derive the desired theorem by induction, using as a base case that if the cycle
rank is small, we only need to remove a small number of vertices to obtain a tree.
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To obtain the existence of a linear-degree vertex in this simplified setting, we ar-
gue in Section 2.3.6 that we may focus on the case where the forest G[R] contains
only paths or only large “well-behaving” subdivided stars. In Section 2.3.7, we dis-
cuss how the Ok-freeness restricts the adjacencies between theses stars/paths and
N . Finally, in Section 2.3.8, we argue that the restrictions yield a simple enough
picture, and derive our main result.

2.3.2 Sparse O2-free graphs with unbounded treewidth

In this subsection, we show the following.

Theorem 2.3.4. For every natural k, there is an O2-free 3-biclique-free (2k+k−1)-
vertex graph with treewidth at least k − 1.

In particular, for infinitely many values of n, there is an O2-free 3-biclique-free
n-vertex graph with treewidth at least log2 n− 2.

Construction of Gk. To build Gk, we first define a word wk of length 2k − 1
on the alphabet [k]. We set w1 = 1, and for every integer i > 1, wi =
i wi−1[1] i wi−1[2] i . . . i wi−1[2

i−1 − 2] i wi−1[2
i−1 − 1] i. It is worth noting

that equivalently wi = incr(wi−1) 1 incr(wi−1), where incr adds 1 to every letter
of the word. Let Πk be the (2k − 1)-path where the ℓ-th vertex of the path (say,
from left to right) is denoted by Πk[ℓ].

The graph Gk is obtained by adding to Πk an independent set of k vertices
v1, v2, . . . , vk, and linking by an edge every pair vi, Πk[ℓ] such that i ∈ [k] and
wk[ℓ] = i.

Observe that we can also define the graph Gk directly, rather than iteratively:
it is the union of a path u1, . . . , u2k−1 and an independent set {v0, . . . , vk−1}, with
an edge between vi and uj if and only if i is the 2-order of j (the maximum k such
that 2k divides j).

See Fig. 2.4 for an illustration.

Gk is O2-free and 3-biclique-free. The absence of K3,3 (even K2,3) as a sub-
graph is easy to check. At least one vertex of the K3,3 has to be some vi, for
i ∈ [k]. It forces that its three neighbors x, y, z are in Πk. In turn, this implies
that a common neighbor of x, y, z (other than vi) is some vi′ ̸= vi; a contradiction
since distinct vertices of the independent set have disjoint neighborhoods.

We now show that Gk is O2-free. Assume towards a contradiction that
Gk[C1 ∪ C2] is isomorphic to the disjoint union of two cycles Gk[C1] and Gk[C2].
As C1 and C2 each induce a cycle, they each have to intersect {v1, . . . , vk}. As-
sume without loss of generality that C1 contains vi, and C2 is disjoint from
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12 23 33 34 44 44 44 45 55 55 55 55 55 55 55 5

Figure 2.4: The graph Gk for k = 5: an O2-free graph without K3,3 subgraph,
k + 2k − 1 vertices, and treewidth at least k − 1.

{vi, vi+1, . . . , vk}. Consider a subpath S of C2 with both endpoints in {v1, . . . , vk},
thus in {v1, . . . , vi−1}, and all the other vertices of S form a set S ′ ⊆ V (Πk). It
can be that the endpoints are in fact the same vertex vi′ , and in that case S is the
entire C2.

Let vi′ , vi′′ be the two (possibly equal) endpoints. Observe that S ′ is a subpath
of Πk whose two endpoints have label i′, i′′ < i. In particular there is a vertex
labeled i somewhere along S ′. This makes an edge between vi ∈ C1 and C2, which
is a contradiction.

Gk has treewidth at least k − 1. We build a Kk-minor as follows. We set
V1 = {v1} ∪ R1 where R1 ⊆ V (Πk) consists of the unique neighbor x1 of v1
together with all the vertices of Πk to the right of x1. Then, for every i ∈ [2, k],
we iteratively define Vi as {vi} ∪Ri where Ri is made of xi the unique neighbor of
vi in V (Πk) \

⋃
1⩽j⩽i−1 Vj and all the vertices of V (Πk) \

⋃
1⩽j⩽i−1 Vj to the right

of xi.

By construction, it is clear that the Vi’s are disjoint and that Gk[Vi] is a path
for every i ∈ [k], hence is connected. It can also be observed that there is an edge
between Ri and vj with j > i. Thus the Vi’s are the branch sets of a Kk-minor.
Therefore tw(Gk) ⩾ tw(Kk) = k − 1. (It is easy to see that the treewidth of Gk

is at most k, since {v2, . . . vk} is a feedback vertex set.)
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2.3.3 Algorithmic applications

This subsection presents algorithms on Ok-free graphs based on our main result,
specifically using the treewidth bound.

Corollary 2.3.2. Every t-biclique-free Ok-free graph on n vertices has treewidth
Ot,k(log n).

Single-exponential parameterized O(1)-approximation algorithms exist for tree-
width. Already in 1995, Robertson and Seymour [RS95] present a 2O(tw)n2-time
algorithm yielding a tree-decomposition of width 4(tw+1) for any input n-vertex
graph of treewidth tw. Run on n-vertex graphs of logarithmic treewidth, this
algorithm outputs tree-decompositions of width O(log n) in polynomial time. We
thus obtain the following.

Corollary 2.3.5. Maximum Independent Set, Hamiltonian Cycle, Min-
imum Vertex Cover, Minimum Dominating Set, Minimum Feedback
Vertex Set, and Minimum Coloring can be solved in polynomial time ng(t,k)

in t-biclique-free Ok-free graphs, for some function g.

Proof. Let h(t, k) be the implicit function in Corollary 2.3.2 such that every t-
biclique-free Ok-free n-vertex graph has treewidth at most h(t, k) log n.

Algorithms running in time 2O(tw)nO(1) = 2h(t,k) lognnO(1) = nh(t,k)+O(1) = ng(t,k)

exist for all these problems but for Minimum Coloring. They are based on dy-
namic programming over a tree-decomposition, which by Corollary 2.3.2 has loga-
rithmic width and by [RS95] can be computed in polynomial time. For Maximum
Independent Set, Minimum Vertex Cover, Minimum Dominating Set,
and q-Coloring (for a fixed integer q) see for instance the textbook [CFK+15,
Chapter 7.3]. For Hamiltonian Cycle and Minimum Feedback Vertex
Set, deterministic parameterized single-exponential algorithms require the so-
called rank-based approach; see [CFK+15, Chapter 11.2].

By Corollary 2.3.14, t-biclique-free Ok-free graphs have bounded chromatic
number. Thus a polynomial time algorithm for Minimum Coloring is implied
by the one for q-Coloring.

In a scaled-down refinement of Courcelle’s theorem [Cou90], Pilipczuk showed
that any problem expressible in Existential Counting Modal Logic (ECML) admits
a single-exponential fixed-parameter algorithm in treewidth [Pil11]. In particular:

Theorem 2.3.6 ([Pil11]). ECML model checking can be solved in polynomial time
on any class with logarithmic treewidth.
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In a nutshell, this logic allows existential quantifications over vertex and edge
sets followed by a counting modal formula that should be satisfied from every
vertex v. Counting modal formulas enrich quantifier-free Boolean formulas with
♢Sφ, whose semantics is that the current vertex v has a number of neighbors
satisfying φ in the ultimately periodic set S of non-negative integers. Another
consequence of Corollary 2.3.2 (and Theorem 2.3.6) is that testing if a graph is
Ok-free can be done in polynomial time among sparse graphs, further indicating
that the general case could be tractable.

Corollary 2.3.7. For any fixed k and t, deciding whether a t-biclique-free graph
is Ok-free can be done in polynomial time.

Proof. One can observe that Ok-freeness is definable in ECML. Indeed, one can
write

φ = ∃X1∃X2 . . . ∃Xk

 ∧
1⩽i⩽k

Xi → ♢{2}Xi

 ∧

 ∧
1⩽i<j⩽k

¬(Xi ∧Xj) ∧ (Xi → ♢{0}Xj)

 .

Formula φ asserts that there are k sets of vertices X1, X2, . . . , Xk such that every
vertex has exactly two neighbors in Xi if it is itself in Xi, the sets are pairwise
disjoint, and every vertex has no neighbor in Xj if it is in some distinct Xi (with
i < j). Thus G is Ok-free if and only if φ does not hold in G.

We now show the main algorithmic consequence of our structural result. This
holds for any (possibly dense) Ok-free graph, and uses the sparse case (Corol-
lary 2.3.5) at the basis of an induction on the size of a largest collection of in-
dependent 4-vertex cycles. It should be noted that this result (as well as the
previous result on MIS above) also works for the weighted version of the problem,
with minor modifications.

Theorem 2.3.3. For every positive integer k, Maximum Independent Set can
be solved in quasi-polynomial time nO(k2 logn) in n-vertex Ok-free graphs.

Proof. Let G be our n-vertex Ok-free input. Let q be the maximum integer such
that G admits q independent 4-vertex cycles (the cycles themselves need not be
induced). Clearly q < k. We show the theorem by induction on q, namely that MIS
can be Turing-reduced in time nc(q+1)2 logn for some constant c (specified later) to
smaller 2-biclique-free instances (hence such that q = 0). We first examine what
happens with the latter instances. Let f(k) = h(2, k) with h(t, k) the hidden
dependence of Corollary 2.3.2. If q = 0, G is 2-biclique-free, so we can solve MIS
in polynomial time nf(k)+O(1) by Corollary 2.3.5.

We now assume that q ⩾ 1, n ⩾ 4, and that the case q − 1 of the induction
has been established (or q − 1 = 0). Let C be a 4-vertex cycle part of a 4q-
vertex subset consisting of q independent 4-vertex cycles. Let S be the set of all
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4q-vertex subsets consisting of q independent 4-vertex cycles in the current graph
(at this point, G), and s = |S|. Thus 1 ⩽ s ⩽ n4q. By assumption, the closed
neighborhood of C, N [C], intersects every subset in S. In particular, there is one
of the four vertices of C, say, v, such that N [v] intersects at least s/4 subsets of
S.

We branch on two options: either we put v in (an initially empty set) I, and
remove its closed neighborhood from G, or we remove v from G (without adding
it to I). With the former choice, the size of S drops by at least s/4, whereas with
the latter, it drops by at least 1.

Even if fully expanded while s > 0, this binary branching tree has at most∑
0⩽i⩽4q log4/3 n

(
n

i

)
= nO(q logn) leaves,

since including a vertex in I can be done at most 4q log4/3 n times within the same
branch; thus, leaves can be uniquely described as binary words of length n with
at most 4q log4/3 n occurrences of, say, 1.

We retrospectively set c ⩾ 1 such that the number of leaves is at most ncq logn,
running the algorithm thus far (when q ⩾ 1) takes at most time nc+cq logn. At
each leaf of the branching, s = 0 holds, which means that the current graph does
not admit q independent 4-vertex cycles. By the induction hypothesis, we can
Turing-reduce each such instance in time ncq2 logn. Thus the overall running time
is

nc+cq logn+ncq logn·ncq2 logn ⩽ nc+cq logn·(ncq2 logn+1) ⩽ nc(q+1)2 logn−cq logn−c logn+c+ 1
logn .

Note that ncq2 logn ⩾ 1 thus we could upperbound ncq2 logn + 1 by 2ncq2 logn =

ncq2 logn+ 1
logn . Since c, q ⩾ 1 and log n ⩾ 1, it holds that −cq log n − c log n + c +

1
logn

⩽ −2c + c + 1 ⩽ 0. Hence we get the claimed running time of nc(q+1)2 logn

for the reduction to q = 0, and the overall running time of nc(q+1)2 logn+f(k)+O(1) =
nO(k2 logn+f(k)).

One may wonder if some other problems beside MIS become (much) easier on
Ok-free graphs than in general. As 2K2-free graphs are O2-free, one cannot expect a
quasi-polynomial time algorithm for Minimum Dominating Set [Ber84, CP84],
Hamiltonian Cycle [Gol04], Maximum Clique [Pol74], and Minimum Col-
oring [KKTW01] since these problems remain NP-complete on 2K2-free graphs.
Nevertheless we give a quasi-polynomial time algorithm for 3-Coloring.

Theorem 2.3.8. There exists a function f such that for every positive integer
k, 3-Coloring can be solved in quasi-polynomial time nO(k2 logn+f(k)) in n-vertex
Ok-free graphs.
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Proof. We solve the more general List 3-Coloring problem, where, in addition,
every vertex v is given a list L(v) ⊆ {1, 2, 3} from which one has to choose its color.
Note that when L(v) = ∅ for some vertex v, one can report that the instance is
negative, and when |L(v)| = 1, v has to be colored with the unique color in its list,
and this color has to be deleted from the lists of its neighbors (once this is done,
v might as well be removed from the graph). These reduction rules are performed
as long as they apply, so we always assume that the current instance has only lists
of size 2 and 3.

We follow the previous proof, and simply adapt the branching rule, and the
value of s. Now s is defined as the sum taken over all vertex sets X consisting of
q independent 4-vertex cycles (the cycles themselves need not be induced), of the
sum of the list sizes of the vertices of X. Hence 8 ⩽ s ⩽ 12 ·n4q. There is a vertex
v ∈ C and a color c ∈ L(v) such that c appears in at least 1

2
· 1
12
· s
4
= s

96
of the lists

of its neighbors. This is because all the lists have size at least 2, and are subsets
of {1, 2, 3}, thus pairwise intersect. (Note that this simple yet crucial fact already
breaks down for List 4-Coloring.)

We branch on two options: either we color v with c, hence we remove color c
from the lists of its neighbors or we commit to not color v by c, and simply remove
c from the list of v. With the former choice, the size of S drops by at least s/96,
whereas with the latter, it drops by at least 1. The rest of the proof is similar with
a possibly larger constant c.

2.3.4 Preliminary results

An important property of t-biclique-free graphs is that they are not dense (in the
sense that they have a subquadratic number of edges).

Theorem 2.3.9 (Kővári, Sós, and Turán [KST54]). For every integer t ⩾ 2 there is
a constant ct such that any n-vertex t-biclique-free graph contains at most ct n2−1/t

edges.

The following lemma shows that for Ok-free graphs, being t-biclique-free is
equivalent to a much stronger ‘large girth’ condition, up to the removal of a
bounded number of vertices.

Lemma 2.3.10. There is a function f such that for any integer ℓ ⩾ 3 and any
t-biclique-free and Ok-free graph G, the maximum number of vertex-disjoint cycles
of length at most ℓ in G is at most f(ℓ, t, k).

Proof. Let N := (2ctkℓ
2)t, where ct is the constant of Theorem 2.3.9.

Assume for the sake of contradiction that G contains N vertex-disjoint cycles
of length at most ℓ, which we denote by C1, . . . , CN . Let H be the graph with

98 C. Hilaire



Contents

vertex set v1, . . . , vN , with an edge between vi and vj in H if and only if there is
an edge between Ci and Cj in G. Since G is Ok-free, H has no independent set of
size k. By Turán’s theorem [Tur41], H contains at least N2

2k−2
− N

2
⩾ N2

2k
− N

2
edges.

Consider the subgraph G′ of G induced by the vertex set
⋃N

i=1 Ci. The graph
G′ has n ⩽ ℓN vertices, and m ⩾ 3N + N2

2k
− N

2
> N2

2k
edges. Note that by the

definition of N , we have

m > N2

2k
= 1

2k
·N2−1/t ·N1/t ⩾ 1

2kℓ2−1/t · n2−1/t · 2ctkℓ2 ⩾ ct n
2−1/t,

which contradicts Theorem 2.3.9, since G′ (as an induced subgraph of G) is t-
biclique-free.

The girth of a graph G is the minimum length of a cycle in G (if G is acyclic,
its girth is set to be infinite). We obtain the following immediate corollary of
Lemma 2.3.10.

Corollary 2.3.11. There is a function g such that for any integer ℓ ⩾ 3, any
t-biclique-free and Ok-free graph G contains a set X of at most g(ℓ, t, k) vertices
such that G−X has girth at least ℓ.

Proof. Let f be the function of Lemma 2.3.10, and let g(ℓ, t, k) := (ℓ− 1) · f(ℓ−
1, t, k). Consider a maximum collection of disjoint cycles of length at most ℓ − 1
in G. Let X be the union of the vertex sets of all these cycles. By Lemma 2.3.10,
|X| ⩽ (ℓ − 1)f(ℓ − 1, t, k) = g(ℓ, t, k), and by definition of X, the graph G − X
does not contain any cycle of length at most ℓ− 1, as desired.

We now state (without proof) a slight variant of Lemma 2.3.10, which will be
particularly useful at the end of the proof of our main result. A banana in a graph
G is a pair of vertices joined by at least 2 disjoint paths whose internal vertices all
have degree 2 in G.

Lemma 2.3.12. There is a function f ′ such that any t-biclique-free and Ok-free
graph G contains a set X of at most f ′(t, k) = Ot(k

t) vertices such that all bananas
of G intersect X.

The proof is the same as that of Lemma 2.3.10. We can take f ′(t, k) =
2f(2, t, k) = O(kt), where f is the function of Lemma 2.3.10 and the implicit
multiplicative constant in the O(·) depends on t. In all the applications of this
lemma, t will be a small constant (2 or 3).

The average degree of a graph G = (V,E), denoted by ad(G), is defined as
2|E|/|V |. Let us now prove that t-biclique-free and Ok-free graphs have bounded
average degree. This can also be deduced from the main result of [KO04], but we

Structure of graphs: minors and induced trees 99



2.3. Largest induced forest

include a short proof for the sake of completeness.4 Moreover, the decomposition
used in the proof will be used again in the proof of our main result.

Lemma 2.3.13. Every Ok-free graph G of girth at least 11 has average degree at
most 2k.

Proof. We proceed by induction on k. When k = 1, G is a forest, with average
degree less than 2. Otherwise, let C be a cycle of minimal length in G. Let N be the
neighborhood of C, let S the second neighborhood of C, and let R = V (G)\(C∪N).
Thus V (G) is partitioned into C,N,R, and we have S ⊆ R. Observe that there
are no edges between C and R in G, so it follows that G[R] is Ok−1-free, and thus
ad(G[R]) ⩽ 2k−2 by induction. Observe also that since G has girth at least 11 and
C is a minimum cycle, the two sets N and S are both independent sets. Moreover
each vertex of N has a unique neighbor in C, and each vertex in S has a unique
neighbor in N . Indeed, in any other case we obtain a path of length at most 5
between two vertices of C, contradicting the minimality of C. It follows that C is
the only cycle in G[C ∪N ∪S], hence this graph has average degree at most 2. As
a consequence, G has a partition of its edges into two subgraphs of average degree
at most 2k − 2 and at most 2, respectively, and thus ad(G) ⩽ 2k − 2 + 2 = 2k, as
desired.

It can easily be deduced from this result that every t-biclique-free Ok-free graph
has average degree at most h(t, k), for some function h (and thus chromatic number
at most h(t, k) + 1).

Corollary 2.3.14. There is a function h such that every t-biclique-free Ok-free
graph has average degree at most h(t, k), and chromatic number at most h(t, k)+1.

Proof. Let G be a t-biclique-free Ok-free graph. By Corollary 2.3.11, G has a set
X of at most g(11, t, k) vertices such that G−X has girth at least 11. Note that
ad(G) ⩽ ad(G−X) + |X| ⩽ ad(G−X) + g(11, t, k) ⩽ 2k + g(11, t, k), where the
last inequality follows from Lemma 2.3.13.

Let h(t, k) = 2k + g(11, t, k). As the class of t-biclique-free Ok-free graphs is
closed under taking induced subgraphs, it follows that any graph in this class is
h(t, k)-degenerate, and thus (h(t, k) + 1)-colorable.

A feedback vertex set (FVS) X in a graph G is a set of vertices of G such that
G − X is acyclic. The minimum size of a feedback vertex set in G is denoted
by fvs(G). The classical Erdős-Pósa theorem [EP65] states that graphs with few
vertex-disjoint cycles have small feedback vertex sets.

4Using the more recent result of [Dvo18], it can be proved that the class of t-biclique-free
and Ok-free graphs actually has bounded expansion, which is significantly stronger than having
bounded average degree. This can also be deduced from our main result, as it implies that sparse
Ok-free graphs have logarithmic separators, and thus polynomial expansion.
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Theorem 2.3.15 (Erdős and Pósa [EP65]). There is a constant c > 0 such that if
a multigraph G contains less than k vertex-disjoint cycles, then fvs(G) ⩽ ck log k.

We use this result to deduce the following useful lemma.

Lemma 2.3.16. There is a constant c > 0 such that the following holds. Let G
consist of a cycle C, together with ℓ paths P1, . . . , Pℓ on at least 2 edges

• whose endpoints are in C, and

• whose internal vertices are disjoint from C, and

• such that the internal vertices of each pair of different paths Pi, Pj are pair-
wise distinct and non-adjacent.

Suppose moreover that G is Ok-free (with k ⩾ 2) and has maximum degree at most
d+ 2. Then

ℓ ⩽ c d k log k.

Proof. Observe that each path Pi intersects or is adjacent to at most 2(d − 1) +
4d < 6d other paths Pj: indeed, if Pi has endpoints x, y in C, then there are at
most 2(d − 1) paths Pj which intersect Pi by sharing x or y as endpoint, and at
most 4d paths Pj which are adjacent to Pi because some endpoint of Pj is adjacent
to either x or y. It follows that there exist s ⩾ ℓ

6d
of these paths, say P1, . . . , Ps

without loss of generality, that are pairwise non-intersecting and non adjacent.
Consider the subgraph G′ of G induced by the union of C and the vertex sets

of the paths P1, . . . , Ps. Since the paths Pi, 1 ⩽ i ⩽ s, are non-intersecting and
non-adjacent, and since G′ does not contain k independent cycles, the graph G′

does not contain k vertex-disjoint cycles. Let G′′ be the multigraph obtained from
G′ by suppressing all vertices of degree 2 (i.e., replacing all maximal paths whose
internal vertices have degree 2 by single edges). Observe that since G′ does not
contain k vertex-disjoint cycles, the graph G′′ does not contains k vertex-disjoint
cycles either. Observe also that G′′ is cubic and contains 2s vertices. It was proved
by Jaeger [Jae74] that any cubic multigraph H on n vertices satisfies fvs(H) ⩾ n+2

4
.

As a consequence, it follows from Theorem 2.3.15 that 2s+2
4

⩽ fvs(G′′) ⩽ c′k log k
(for some constant c′), and thus ℓ ⩽ 12dc′k log k = cdk log k (for c = 12c′), as
desired.

A strict subdivision of a graph is a subdivision where each edge is subdivided
at least once.

Lemma 2.3.17. There is a constant c > 0 such that for any integer k ⩾ 2, any
strict subdivision of a graph of average degree at least c k log k contains an induced
Ok.
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Proof. Note that if a graph G contains k vertex-disjoint cycles, then any strict
subdivision of G contains an induced Ok. Hence, it suffices to prove that any
graph with less than k vertex-disjoint cycles has average degree at most some
function of k. By Theorem 2.3.15, there is a constant c′ such that any graph G
with less than k vertex-disjoint cycles contains a set X of at most c′k log k vertices
such that G−X is acyclic. In this case G−X has average degree at most 2, and
thus G has average degree at most c′k log k + 2 ⩽ ck log k (for some constant c),
as desired.

2.3.5 Logarithmic treewidth of sparse Ok-free graphs

Recall our main result.

Theorem 2.3.1. Any t-biclique-free Ok-free graph on n vertices has a feedback
vertex set of size Ot,k(log n).

The proof of Theorem 2.3.1 relies on the cycle rank, which is defined as r(G) =
|E(G)| − |V (G)| + |C(G)| where C(G) denotes the set of connected components
of G. The cycle rank is exactly the number of edges of G which must be deleted
to make G a forest, hence it is a trivial upper bound on the size of a minimum
feedback vertex set. Remark the following simple properties.

Lemma 2.3.18. The cycle rank is invariant under the following operations:

1. Deleting a vertex of degree 0 or 1.

2. Deleting a connected component which is a tree.

We call reduction the operation of iteratively deleting vertices of degree 0 or 1,
which preserves cycle rank by the above lemma. A graph is reduced if it has
minimum degree at least 2, and the core of a graph G is the reduced graph obtained
by applying reductions to G as long as possible. The inclusion-wise minimal FVS
of G and of its core are exactly the same.

In a graph G, a vertex x is called ε-rich if d(x) ⩾ ε · r(G). Our strategy to
prove Theorem 2.3.1 is to iteratively reduce the graph, find an ε-rich vertex, add
it to the FVS and delete it from the graph. The following lemma shows that the
cycle rank decreases by a constant factor each iteration, implying that the process
terminates in logarithmically many steps.

Lemma 2.3.19. In a reduced Ok-free graph, deleting a vertex of degree d decreases
the cycle rank by at least d−k+1

2
.
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Proof. In any graph G, deleting a vertex x of degree d decreases the cycle rank
by d− c, where c is the number of connected components of G− x which contain
a neighbor of x. If G is Ok-free, then all but at most k − 1 components of G− x
are trees. Furthermore, if T is a connected component of G − x which is a tree,
then T must be connected to x by at least two edges, as otherwise T must contain
a vertex of degree 1 in G, which should have been deleted during reduction. Thus
we have

2c− (k − 1) ⩽ d. (2.5)

Therefore the cycle rank decreases by at least d− d+k−1
2

= d−k+1
2

as desired.

The existence of rich vertices is given by the following result.

Theorem 2.3.20. For any k, there is some εk > 0 such that any Ok-free graph
with girth at least 11 has an εk-rich vertex.

Let us first prove Theorem 2.3.1 using Theorem 2.3.20.

Proof of Theorem 2.3.1. Fix k and t. Given a graph G which is Ok-free and t-
biclique-free, we apply Lemma 2.3.10 to obtain a set X of size at most f(11, t, k)

such that G′ def
= G − X has girth at least 11. Thus, it suffices to prove the re-

sult for G′, and finally add X to the resulting FVS of G′. Since log r(G′) ⩽
log

(|V (G′)|
2

)
⩽ 2 log |V (G′)|, we have reduced the problem to the following.

Claim 2.3.21. For any k, there is a constant ck such that if G is an Ok-free graph
with girth at least 11, then fvs(G) ⩽ ck · log r(G).

Let us now assume that G is as in the claim, and consider its core H, for which
r(H) = r(G) and fvs(H) = fvs(G). Consider an εk-rich vertex x in H with εk as
in Theorem 2.3.20. If r(G) ⩾ 2k · ε−1

k , then d(x) ⩾ 2k, hence by Lemma 2.3.19,
deleting x decreases the cycle rank of G by at least

d(x)− k + 1

2
⩾

d(x)

4
⩾

εk
4
r(G). (2.6)

Thus, as long as the cycle rank is more than 2k · ε−1
k , we can find a vertex

whose deletion decreases the cycle rank by a constant multiplicative factor. After
logarithmically many steps, we have fvs(G) ⩽ r(G) ⩽ 2k · ε−1

k . In the end, the
feedback vertex set consists of at most f(11, t, k) vertices in X, logarithmically
many rich vertices deleted in the induction, and at most 2k · ε−1

k vertices for the
final graph.

We now focus on proving Theorem 2.3.20. Let G be an Ok-free graph with
girth at least 11. Consider C a shortest cycle of G, N the neighborhood of C, and
R

def
= G − (C ∪ N) the rest of the graph (see Figure 2.5). Remark that there is
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C N S

R

Figure 2.5: Subgraph of an O4-free graph G. V (G) is partitioned into three sets
C,N,R, where C is a shortest cycle, N is an independent set and first neighborhood
of C, and R is O3-free. S is the second neighborhood of N . Gray lines correspond
to induced paths where all internal vertices have degree 2.

no edge between C and R, hence G[R] is an Ok−1-free graph. As a special case, if
k = 2, then G[R] is a forest. We will show that in general, it remains possible to
reduce the problem to the case where G[R] is a forest, which is our main technical
theorem.

Theorem 2.3.22. For any k, there is some δk > 0 such that if G is a connected
Ok-free graph with girth at least 11, and furthermore G[R] is a forest where R is
as in the decomposition described above, then G has a δk-rich vertex.

Theorem 2.3.22 will be proved in Section 2.3.8. In the remainder of this subsec-
tion, we assume Theorem 2.3.22 and explain how Theorem 2.3.20 can be deduced
from it.

Proof of Theorem 2.3.20. The proof is by induction on k. Let δk > 0 be as in
Theorem 2.3.22, and let εk−1 > 0 be as in Theorem 2.3.20, obtained by induction
hypothesis. We fix

εk
def
= min

{
εk−1

20
,
δk
20

,
δk

5(k + 1)
,

1

30(k − 2)

}
. (2.7)

Let G be any Ok-free graph with girth at least 11. Reductions preserve all
the hypotheses of the claim, and the value of r(G), hence we can assume G to
be reduced. Consider the decomposition C,N,R as previously described. We
construct a subset F ⊂ R inducing a rooted forest in G such that the only edges
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from F to R \ F are incident to roots of F , and each root of F is incident to at
most one such edge.

Claim 2.3.23. If F ⊂ R has the former property and F ′ ⊂ R \F induces a forest
in G, then F ∪ F ′ induces a forest in G.

Proof. Each connected component of G[F ] has a single root, which is the only
vertex which can be connected to F ′. ⌟

We construct F inductively, starting with an empty forest, and applying the
following rule as long as it applies: if x ∈ R\F is adjacent to at most one vertex in
R \F , we add x to F , and make it the new root of its connected component in F .
The condition on F obviously holds for F = ∅. When adding x, by Claim 2.3.23,
F ∪ {x} is still a forest. Furthermore, if y ∈ F ∪ {x} is adjacent to R \ (F ∪ {x}),
then either y = x or y was a root before the addition of x, and is not adjacent
to x, and therefore x and y are in distinct connected components of F ∪ {x}. In
either case, y is a root of F ∪ {x} as required.

We now denote by F the forest obtained when the previous rule no longer
applies, and let R′ = R \ F . Remark that we may have as edge cases that F = R,
meaning that G[R] is a forest (and we fall in the case of Theorem 2.3.22), or
inversely F = ∅, which means that G[R] has minimum degree at least 2.

Claim 2.3.24. All vertices in G[R′] have degree at least 2.

Proof. A vertex of degree less than 2 in G[R′] should have been added to F . ⌟

Claim 2.3.25. The graph G[C ∪N ∪ F ] is connected.

Proof. It suffices to show that each connected component T of G[F ] is connected
to N . Each such component T is a tree. If T consists of a single vertex v, then
v is the root of T and has at most one neighbor in R′ by definition. Since G is
reduced, v has degree at least 2 in G, hence it must be connected to N .

If T contains at least two vertices, then it contains at least 2 leaves, and in
particular at least one leaf v which is not the root of T . The vertex v has a single
neighbor in R (its parent in T ), and thus similarly as above it must have a neighbor
in N . ⌟

Define B as the set of vertices of R′ adjacent to N ∪F , and let A be the set of
edges between N ∪ F and B.

Claim 2.3.26. If |A| ⩽ 9
10
r(G), then G has an εk-rich vertex.
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Proof. Deleting A from G decreases the cycle rank by at most |A|, hence r(G−A) ⩾
r(G)/10. Since G[C ∪ N ∪ F ] and G[R′] are unions of connected components
of G− A, we have

r(G− A) = r(G[C ∪N ∪ F ]) + r(G[R′]).

Thus either G[C ∪N ∪ F ] or G[R′] has cycle rank at least r(G)/20. If it is G[C ∪
N ∪ F ], then we can apply Theorem 2.3.22 to find a (δk/20)-rich vertex, and if
it is G[R′], then we can apply the induction hypothesis to find an (εk−1/20)-rich
vertex. In either case, this gives an εk-rich vertex. ⌟

Thus we can now assume that |A| ⩾ 9
10
r(G).

Let B1, resp. B2, be the set of vertices of B incident to exactly one, resp.
at least two edges of A, and let A1, A2 ⊆ A be the set of edges of A incident
to B1, B2 respectively. Remark that A1, A2 and B1, B2 partition A and B respec-
tively, and |A1| = |B1|.

Claim 2.3.27. If |A2| ⩾ 4
9
|A|, then G has an εk-rich vertex.

Proof. Assume that |A2| ⩾ 4
9
|A|, and thus |A2| ⩾ 2

5
r(G).

By Lemma 2.3.13, G is 2k-degenerate, hence it can be vertex-partitioned into
k + 1 forests. Consider this partition restricted to B2, and choose B3 ⊆ B2 which
induces a forest and maximizes the set A3 of edges incident to B3. Thus |A3| ⩾
|A2| /(k + 1) ⩾ 2

5(k+1)
r(G). By Claim 2.3.23, F ∪ B3 is a forest, hence Theo-

rem 2.3.22 applies to G[C ∪N ∪ F ∪B3].
By Claim 2.3.25, G[C∪N∪F ] is connected, thus adding the vertices B3 and the

edges A3 increases the cycle rank by |A3| − |B3|. This quantity is at least |A3| /2
since any vertex of B3 is incident to at least two edges of A3, and each edge of A3

is incident to exactly one vertex of B3. Thus Theorem 2.3.22 yields a vertex of
degree at least

δk · r(G[C ∪N ∪ F ∪B3]) ⩾
|A3|
2

δk ⩾
1

5(k + 1)
δk · r(G) ⩾ εk · r(G) (2.8)

as desired. ⌟

Thus we can now assume that |A1| ⩾ 5
9
|A|, and thus |B| ⩾ 5

9
|A| ⩾ 1

2
r(G).

Let X, resp. Y , be the set of vertices of B with degree at least 3, resp. exactly
2, in G[R′]. By Claim 2.3.24, this is a partition of B.

Claim 2.3.28. If |X| ⩾ |B| /5, then G has an εk-rich vertex.
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Proof. Assume that |X| ⩾ |B| /5, and thus |X| ⩾ 1
10
r(G).

The cycle rank is lowerbounded by the following sum:

r(G[R′]) ⩾ |E(G[R′])| − |R′| = 1

2

∑
x∈R′

(dG[R′](x)− 2). (2.9)

By Claim 2.3.24, every term in the sum is non-negative, and each x ∈ X con-
tributes by at least 1/2 to the sum. Thus r(G[R′]) ⩾ |X| /2 ⩾ 1

20
r(G), and the

induction hypothesis applied to G[R′] (which is Ok−1-free) yields an (εk−1/20)-rich
vertex, which is also εk-rich. ⌟

Thus we can now assume that |Y | ⩾ 4
5
|B| ⩾ 2

5
r(G).

Let Z be the set of vertices of R′ that either are in Y or have degree at least 3
in G[R′]. Remark that Z is exactly the set of vertices of R′ with degree at least 3
in G. In G[R′], a direct path is a path whose endpoints are in Z, and whose
internal vertices are not in Z. In particular, internal vertices of a direct path have
degree 2. A direct path need not be induced, as its endpoints may be adjacent.
As a degenerate case, we consider a cycle that contains a single vertex of Z to
be a direct path whose two endpoints are equal. One can naturally construct
a multigraph GZ with vertex set Z and whose edges correspond to direct paths
in G[R′]. Remark that vertices of Z have the same degree in GZ and in G[R′].

Any y ∈ Y has two neighbors x1, x2 in GZ . In degenerate cases, it may be that
x1 = x2 ̸= y (multi-edge in GZ), in which case G[R′] contains a banana between y
and x1, or that x1 = x2 = y (loop in GZ), in which case there is a cycle Cy which
is a connected component of G[R′], and such that y is the only vertex of Z in Cy.
We partition Y into Yi, Ye as follows: for y, x1, x2 as above, if x1, x2 ∈ Y , then we
place y in Yi, and otherwise (x1 or x2 is in Z \ Y ) we place y in Ye.

Claim 2.3.29. If |Ye| ⩾ 3
4
|Y |, then G has an εk-rich vertex.

Proof. Assume |Ye| ⩾ 3
4
|Y |, and thus |Ye| ⩾ 3

10
r(G).

By definition, any vertex of Ye is adjacent in GZ to some vertex of Z \Y . Thus,
using that dGZ

(z) = dG[R′](z) for any z ∈ Z, we obtain∑
z∈Z\Y

dG[R′](z) ⩾ |Ye| . (2.10)

Recall inequality (2.9) on cycle rank:

r(G[R′]) ⩾
1

2

∑
x∈R′

(dG[R′](x)− 2). (2.11)
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By Claim 2.3.24, the terms of this sum are non-negative. Thus, restricting it
to Z \ Y , we have

r(G[R′]) ⩾
1

2

∑
z∈Z\Y

(dG[R′](z)− 2). (2.12)

By definition of Z, vertices of Z \ Y have degree at least 3 in G[R′]. Thus, each
term of the previous sum satisfies dG[R′](z)−2 ⩾ dG[R′](z)/3. It follows using (2.10)
that

r(G[R′]) ⩾
1

2

∑
z∈Z\Y

dG[R′](z)

3
⩾

|Ye|
6

⩾
1

20
r(G). (2.13)

Thus the induction hypothesis applied to G[R′] (which is Ok−1-free) yields an
(εk−1/20)-rich vertex, which is also εk-rich. ⌟

Thus we can now assume that |Yi| ⩾ 1
4
|Y | ⩾ 1

10
r(G).

We now consider the induced subgraph H of G[R′] consisting of Y , and direct
paths joining vertices of Y . Thus H has maximum degree 2, and since G[R′] is
Ok−1-free, at most k−2 components of H are cycles, the rest being paths. Remark
that the endpoints of paths in H correspond exactly to Ye. Also, each connected
component of H must contain at least one vertex of Y .

We perform the following cleaning operations, in this order:

• In each cycle of H, pick an arbitrary vertex and delete it, so that all connected
components are paths.

• Iteratively delete a vertex of degree 0 or 1 which is not in Y , so that the
endpoints of paths are all in Y .

• Delete any isolated vertex.

Let H ′ be the subgraph of H obtained after these steps.

Claim 2.3.30. All but 3(k − 2) vertices of Yi are internal vertices of paths of H ′.

Proof. If y ∈ Yi belongs to a path of H, then it must be an internal vertex of
this path, and the path is unaffected by the cleaning operations. Thus it suffices
to prove that in each cycle of H, at most 3 vertices of Yi are deleted or become
endpoints of paths during the clean up.

Let C ′ be a cycle of H. If C ′ contains no more than 2 vertices of Yi, there
is nothing to prove. Remark in this case that C ′ is entirely deleted by the clean
up. Otherwise, let x be the vertex deleted from H (which may be in Yi), and
let y1, y2 be the first vertices of Yi strictly before and after x in the cyclic order
of C ′. Since C ′ has at least 3 vertices of Yi, x, y1, y2 are all distinct. Then, it is clear
that the cleaning operations transform C ′ into a path with endpoints y1, y2, such
that any y ∈ Yi ∩ C ′ distinct from x, y1, y2 is an internal vertex of this path. ⌟
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We now add H ′ to F , which yields a forest by Claim 2.3.23. Recall that
vertices of Y are adjacent to N ∪ F , and all endpoints of paths of H ′ are in Y .
Thus, in G[C ∪N ∪F ∪H ′], every vertex of H ′ has degree at least 2, and vertices
of Yi in the interior of paths of H ′ have degree at least 3. Since G[C ∪ N ∪ F ]
is connected by Claim 2.3.25, the addition of H ′ does not change the number of
connected components. Using Claim 2.3.30, this implies that

r(G[C ∪N ∪ F ∪H ′]) ⩾ |Yi| − 3(k − 2). (2.14)

We finally apply Theorem 2.3.22 to G[C ∪ N ∪ F ∪ H ′] to obtain a vertex with
degree at least

δk · (|Yi| − 3(k − 2)).

Since G contains vertices of degree at least 2, we can always assume that εk ·r(G) ⩾
2, and thus

|Yi| ⩾
1

10
· 2ε−1

k ⩾
1

5
· 30(k − 2) = 6(k − 2). (2.15)

It follows that |Yi| − 3(k− 2) ⩾ |Yi| /2, and the previous argument yields a vertex
of degree at least δk

2
|Yi| ⩾ δk

20
r(G), which is an εk-rich vertex.

2.3.6 Cutting trees into stars and paths

The setting in all this subsection is the following. We consider a graph H which
is the disjoint union of a forest F and an independent set N , such that the neigh-
borhood of N in F is a subset S ⊆ V (F ) containing all the leaves of F , and each
vertex of S has a unique neighbor in N . Moreover H is Ok-free (and it can be
deduced from the definition that H is 3-biclique-free).

A path is a special case of subdivided star. The center of a subdivided star is
the vertex of degree at least 3, if any. If none, the subdivided star is a path, and
its center is a vertex of degree 2 that belongs to S, if any, and an arbitrary vertex
otherwise. We say a forest F ′ ⊆ F is S ′-clean, for some S ′ ⊆ S, if V (F ′) ∩ S ′ =
L(F ′), where L(F ′) denotes the set of leaves of F ′. We define being quasi-S ′-clean
for a subdivided star as intersecting S ′ at exactly its set of leaves, plus possibly
its center. Formally, a subdivided star T is quasi-S ′-clean if L(T ) ⊆ V (T ) ∩ S ′ ⊆
L(T )∪{c} where c is the center of T . The degree of a subdivided star is the degree
of its center. A forest F ′ ⊆ F of subdivided stars is quasi-S ′-clean, for some
S ′ ⊆ S, if all its connected components are quasi-S ′-clean (subdivided stars).

Our approach in this subsection is summarized in Figure 2.6. We start with
an arbitrary forest F and a subset S of vertices including all the leaves of F (the
vertices of S are depicted in white, while the vertices of F−S are depicted in black).
We first extract quasi-S-clean subdivided stars (Lemma 2.3.31). We then extract
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Lemma 6.1 Lemma 6.3 Corollary 6.7F

Figure 2.6: A visual summary of subsection 2.3.6.

quasi-S-clean subdivided stars of large degree, or S-clean paths (Lemma 2.3.33).
Finally we extract S-clean subdivided stars of large degree or paths (Corollary
2.3.37). At each step the number of vertices of S involved in the induced subgraph
of F we consider is linear in |S|.

Lemma 2.3.31. There is a subset F ∗ ⊆ F containing at least 1
2
|S| vertices of S

such that each connected component of H[F ∗] is a quasi-S-clean subdivided star.

Proof. We first use the following claim.

Claim 2.3.32. There is a set of edges X ⊆ E(H) such that every connected
component of H[F ] \X is either a quasi-S-clean subdivided star or a single vertex
that does not belong to S.

Proof. We proceed greedily, starting with X = ∅. While H[F ] \ X contains a
component T and an edge e ∈ T such that the two components of T − e each
contains either no vertex of S or at least two vertices of S, we add e to X.

Observe that in H[F ], every connected component with at least one edge con-
tains at least 2 vertices of S. Throughout the process of defining X, every con-
nected component of H[F ] \X with at least one edge contains either 0 or at least
2 vertices of S.

At the end of the process, for any connected component T of H[F ] \ X with
at least one edge, all the leaves of T belong to S. Otherwise, the edge incident to
the leaf of T that is not in S can be added to X.

Thus, H[F ] \X does not contain any component with more than one vertex of
degree at least 3, since otherwise any edge on the path between these two vertices
would have been added to X, yielding two components containing at least 2 leaves,
and thus at least 2 vertices of S.

Observe also that if H[F ]\X contains a component T with a vertex v ∈ S that
has degree 2 in T , then T is a path containing exactly 3 vertices of S, and thus
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T is a subdivided star whose center and leaves are in S, and whose other internal
vertices are not in S. ⌟

To conclude, we need to select connected components of H[F ] \X with more
than one vertex and that are pairwise non-adjacent in H. Consider the minor GF

of F obtained by contracting each connected component of H[F ] \X into a single
vertex and deleting those that are a single vertex not in S. Since F is a forest, the
graph GF is a forest. We weigh each vertex of GF by the number of elements of S
that the corresponding connected component of H[F ] \X contains. Since GF is a
forest, there is an independent set {u1, u2, . . . , up} that contains at least half the
total weight. The connected components corresponding to u1, u2, . . . , up together
form a forest F ∗ with the required properties.

We observe that subdivided stars of small degree can be transformed into paths
for a low price, as follows. A subdivided star forest is a forest whose components
are subdivided stars (possibly paths).

Lemma 2.3.33. For every S ′ ⊆ S, quasi-S ′-clean subdivided star forest F ′ ⊆ F ,
and integer D ⩾ 2, there is a subdivided star forest F ′′ ⊆ F ′ such that every con-
nected component of H[F ′′] is either an S ′-clean path or a quasi-S ′-clean subdivided
star of degree at least D. Additionally, F ′′ contains at least 2|S′∩F ′|

D
vertices of S ′.

Proof. We define F ′′ from F ′ as follows. Consider a connected component T of
H[F ′]. If the center of T has degree at least D, we add T to F ′′. Consider now
the case where T is a quasi-S ′-clean subdivided star whose center c has degree less
than D. If c ∈ S ′, we select a non-edgeless path P ⊆ T between c and S ′, and add
P to F ′′. If c ̸∈ S ′, we select two internally-disjoint paths P1, P2 ⊆ T between c
and S ′, and add P1 ∪ P2 to F ′′. Note that P1 ∪ P2 yields an S ′-clean path.

To see that F ′′ contains at least 2|S′∩F ′|
D

vertices of S ′, we simply observe that
out of a maximum of (D− 1)+1 vertices of S ′ in a component T , we keep at least
2 in F ′. This adds up to 2|S′|

D
vertices of S ′ since connected components of H[F ′]

are disjoint by definition.

Lemma 2.3.34. If each vertex of N has degree less than 1
8k
|S|, one of the following

holds.

• there is a subset S ′ of S and a subset F2 of F such that F2 contains 1
32
|S| ver-

tices of S ′, and each connected component of H[F2] is an S ′-clean subdivided
star.

• there is a subset F3 of F such that every connected component of F3 is a
quasi-S-clean subdivided star of degree at most 4 and F3 contains at least
1
8
|S| vertices of S.
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Proof. Let F ∗ be the forest obtained from Lemma 2.3.31, which contains at least
1
2
|S| vertices of S, and such that each component of H[F ∗] is a quasi-S-clean

subdivided star or an S-clean path. We define the label of a vertex of S to be its
only neighbor in N .

Claim 2.3.35. There is a subset F1 of F ∗ containing at least 1
4
|S| vertices of S,

such that no subdivided star of F1 has its center and one of its endpoints sharing
the same label.

Proof. Let ℓ be the maximum integer such that there exist ℓ subdivided stars
S1, S2, . . . , Sℓ in H[F ∗] and ℓ different labels v1, . . . , vℓ ∈ N , such that for any
1 ⩽ i ⩽ ℓ, Si has its center and at least one of its endpoint labeled vi. Note that
in this case G contains ℓ independent cycles, and thus ℓ < k by assumption.

For any 1 ⩽ i ⩽ ℓ, remove all the leaves u of F ∗ that are labeled vi, and also
remove the maximal path of H[F ∗] ending in u. By assumption, there are at most
1
8k
|S| such vertices u for each 1 ⩽ i ⩽ ℓ, and thus we delete at most k · 1

8k
|S| ⩽ 1

8
|S|

vertices of S from F ∗. We also delete the centers that have no leaves left (there
are at most k · 1

8k
|S| ⩽ 1

8
|S| such deleted centers). Let F1 be the resulting subset of

F ∗. Note that F1 contains at least |F ∗ ∩ S| − 2 · 1
8
|S| ⩾ (1

2
− 1

4
)|S| = 1

4
|S| vertices

of S. ⌟

We can assume that a subset Y of at least 1
8
|S| vertices of S in the forest

F1 obtained from Claim 2.3.35 are involved in a quasi-S-clean subdivided star
of degree at least 5. Indeed, otherwise at least 1

8
|S| vertices of S in the forest

F1 obtained from Claim 2.3.35 are involved in a quasi-S-clean subdivided star of
degree at most 4 (note that an S-clean path is an S-clean subdivided star), and
in this case the second outcome of Lemma 2.3.34 holds.

For each label v ∈ N , we choose uniformly at random with probability 1
2

whether v is a center label or a leaf label. We then delete all the subdivided stars
of F1 whose center is labeled with a leaf label, and all the leaves whose label is a
center label. Moreover, we delete from N all the vertices that are a center label,
and let S ′ be the set of vertices of S whose neighbor in N is not deleted.

Take a vertex u of Y . If u is a center of a subdivided star, then the probability
that u is not deleted is at least 1

2
. If u is a leaf, u is kept only if u and the center of

the subdivided star it belongs to (which has by construction a different label) are
correctly labeled, so u is kept with probability at least 1

4
. Overall, each vertex u

of Y has probability at least 1
4

to be kept. Thus the expectation of the fraction of
vertices of Y not deleted is at least 1

4
, thus we can find an assignment of the labels

to leaf labels or center labels, such that a subset Z ⊆ Y with |Z| ⩾ 1
4
|Y | survives.

We then iteratively delete vertices of degree 1 that do not belong to S ′ and
all vertices of degree 0. Let F2 be the resulting forest. Note that S ′ contains
only the endpoints of stars with a leaf label, thus the forest F2 is S ′-clean. It
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remains to argue that F2 contains a significant fraction of vertices of S. Note
that a connected component of F1 is deleted if and only if it contains at most one
element of Z. Every such component has at least 4 elements in Y \Z, hence there
are at most 1

4
· 3
4
|Y | = 3

16
|Y | such components. It follows that F2 contains at least

|Z| − 3
16
|Y | ⩾ 1

4
|Y | − 3

16
|Y | ⩾ 1

16
|S| elements of Z ⊆ S.

We now have all the ingredients to obtain the following two corollaries.

Corollary 2.3.36. For any D ⩾ 2, there is a subset F ∗ ⊆ F containing at least
1
2D

|S| vertices of S such that each

1. F ∗ induces a quasi-S-clean subdivided star forest whose components all have
degree at least D, or

2. F ∗ induces an S-clean path forest.

Corollary 2.3.36 follows from Lemma 2.3.31 by applying Lemma 2.3.33 and
observing that one of the two outcomes contains half the corresponding vertices in
S.

Corollary 2.3.37. Let D ⩾ 2. If each vertex of N has degree less than 1
8k
|S|,

then there are F ′′ ⊆ F , S ′ ⊆ S such that F ′′ contains at least 1
32D

|S| vertices of S ′

and one of the following two cases apply.

1. F ′′ induces an S ′-clean subdivided star forest whose components all have de-
gree at least D, or

2. F ′′ induces an S ′-clean path forest.

Similarly, Corollary 2.3.37 follows from Lemma 2.3.34 by applying
Lemma 2.3.33 and observing that one of the two outcomes contains half the cor-
responding vertices in S.

2.3.7 Trees, stars, and paths

In the proof of Theorem 2.3.22, we will apply Corollaries 2.3.36 and 2.3.37 several
times, and divide our graph into two parts: a union of subdivided stars on one
side, and a union of subdivided stars or paths on the other side. We now explain
how to find a rich vertex in this context.

We start with the case where subdivided stars appear on both sides.

Lemma 2.3.38 (Star-star lemma). Let c > 0 be the constant of Lemma 2.3.17.
Let H be an Ok-free graph whose vertex set is the union of two sets L,R, such that

• S = L ∩R is an independent set,
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• there are no edges between L \ S and R \ S, and

• L (resp. R) induces in H a disjoint union of subdivided stars, whose centers
have average degree at least 3ck log k, and whose set of leaves is precisely S.

Then H contains a vertex of degree at least 1
2f ′(3,k)

|S| = Ω( 1
k3
|S|), where f ′ is the

function of Lemma 2.3.12.

Proof. Note that H is 3-biclique-free (but might contain some K2,2 subgraph) and
Ok-free. By Lemma 2.3.12, there is a set X of at most f ′(3, k) vertices of H such
that all bananas of H intersect X. Since the centers of the subdivided stars are
the only vertices of degree larger than 2 in H, we can assume that X is a subset
of the centers of the subdivided stars.

Assume first that less than 1
2
|S| vertices of S are leaves of subdivided stars

centered in an element of X. Let S ′ ⊆ S be the leaves of the subdivided stars
whose center is not in X (note that |S ′| ⩾ 1

2
|S|), and remove from the subdivided

stars of H[L] and H[R] all branches whose endpoint is not in S ′ to get new sets
of vertices L′, R′. The centers of the resulting S ′-clean subdivided stars now have
average degree at least 1

2
· 3ck log k > ck log k. We denote the resulting S ′-clean

subdivided stars of H[L′] by S1, S2, etc. and their centers by s1, s2, etc. Similarly,
we denote the resulting S ′-clean subdivided stars of H[R′] by S ′

1, S
′
2, etc. and their

centers by s′1, s
′
2, etc. Observe that by the definition of X, for any two centers

si, s
′
j, there is at most one vertex u ∈ S ′ which is a common leaf of Si and S ′

j.
Let B be the bipartite graph with partite set s1, s2, . . . and s′1, s

′
2, . . ., with

an edge between si and s′j if and only if some vertex of S ′ is a common leaf
of Si and S ′

j. Note that B has average degree more than ck log k, and some
induced subgraph of H (which is Ok-free) contains a strict subdivision of B. This
contradicts Lemma 2.3.17.

So we can assume that at least 1
2
|S| vertices of S are leaves of subdivided stars

centered in an element of X. Then some vertex of X has degree at least 1
2f ′(3,k)

|S|,
as desired.

We now consider the case where subdivided stars appear on one side, and paths
on the other.

Lemma 2.3.39 (Star-path lemma). Let c > 0 be the constant of Lemma 2.3.17.
Let H be an Ok-free graph whose vertex set is the union of two sets L,R, such that

• S = L ∩R is an independent set,

• there are no edges between L \ S and R \ S,
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• L induces in H a disjoint union of paths, whose set of endpoints is precisely
S, and

• R induces in H a disjoint union of subdivided stars, whose centers have
average degree at least 4ck log k, and whose set of leaves is precisely S.

Then H contains a vertex of degree at least 1
3f ′(2,k)

|S| = Ω( 1
k2
|S|), where f ′ is the

function of Lemma 2.3.12.

Proof. Note that H is 2-biclique-free and Ok-free. By Lemma 2.3.12, there is a set
X of at most f ′(2, k) vertices of H such that all bananas of H intersect X. Since
the centers of the subdivided stars are the only vertices of degree more than 2 in
H, we can assume that X is a subset of the centers of the subdivided stars.

Assume first that less than 1
3
|S| vertices of S are leaves of subdivided stars

centered in an element of X. Then there are at least 1
6
|S| paths in H[L] whose

endpoints are not leaves of stars centered in X. Let S ′ ⊆ S be the endpoints of
these paths (note that |S ′| ⩾ 1

3
|S|), and remove from the subdivided stars of H[R]

all branches whose endpoint is not in S ′ to get R′. The centers of the resulting
S ′-clean subdivided stars in H[R′] now have average degree at least 1

3
· 4ck log k >

ck log k. We denote these subdivided stars by S1, . . . , St, and their centers by
s1, . . . , st.

Given two centers si, sj, we say that a pair ui, uj ∈ S ′ is an {i, j}-route if ui is
a leaf of Si, uj is a leaf of Sj, and there is a path with endpoints ui, uj in H[L].
Observe that by the definition of X, for every pair si, sj, there is at most one
{i, j}-route.

Let G be the graph with vertex set s1, . . . , st, with an edge between si and
sj if and only if there is an {i, j}-route. Note that G has average degree more
than ck log k, and some induced subgraph of H (which is Ok-free) contains a strict
subdivision of G. This contradicts Lemma 2.3.17.

So we can assume that at least 1
3
|S| vertices of S are leaves of subdivided stars

centered in an element of X. Then some vertex of X has degree at least 1
3f ′(2,k)

|S|,
as desired.

From the two previous lemmas and Lemma 2.3.31 we deduce the following.

Lemma 2.3.40 (Star-tree lemma). There is a constant c > 0 such that the fol-
lowing holds. Let H be an Ok-free and t-biclique-free graph whose vertex set is the
union of two sets L,R, such that

• S = L ∩R is an independent set partitioned into SP , ST ,

• there are no edges between L \ S and R \ S,
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• L induces in H a disjoint union of subdivided stars, whose centers have
average degree at least (8ck log k)2, and whose set of leaves is equal to S, and

• R induces in H the disjoint union of

– paths on a vertex set RP , whose set of endpoints is equal to SP , and

– a tree T on a vertex set RT such that ST is a subset of leaves of T .

Then H contains a vertex of degree at least Ω( 1
k4 log k

|S|).

Proof. Let c > 0 be the constant of Lemma 2.3.17. Assume first that |ST | ⩽ 1.
Then since the subdivided stars of L have average degree at least (8ck log k)2, we
have |SP | = |S|−|ST | ⩾ (8ck log k)2−1 ⩾ 1 and thus |SP | ⩾ 1

2
|S|. By removing the

branch of a subdivided star of L that has an endpoint in ST (if any), we obtain a set
of SP -clean subdivided stars of average degree at least 1

2
· (8ck log k)2 ⩾ 4ck log k.

By Lemma 2.3.39, we get a vertex of degree at least Ω( 1
k2
|SP |) = Ω( 1

k2
(|S|)), as

desired. So in the remainder we can assume that |ST | ⩾ 2.
Let T ′ be the subtree of T obtained by repeatedly removing leaves that are not

in ST . Since |ST | ⩾ 2, L(T ′) = ST . Observe that F ′ = T ′∪RP is an S-clean forest
(with L(F ′) = S), thus any S-quasi-clean subforest of F ′ is S-clean. It follows
from Corollary 2.3.36 (applied to S, F ′, and D = 4ck log k) that F ′ contains a
subset F ∗ containing at least 1

2·4ck log k
|S| vertices of S, such that H[F ∗] induces

either (1) an S-clean forest of path, or (2) an S-clean forest of subdivided stars of
degree at least 4ck log k.

We denote this intersubsection of S and F ∗ by S∗, and we remove in the
subdivided stars of H[L] all branches whose endpoint is not in S∗ to get a new set
of vertices L∗ ⊂ L. By assumption, the average degree of the subdivided stars in
L∗ is at least (8ck log k)2

8ck log k
= 8ck log k ⩾ 4ck log k.

In case (1) above we can now apply Lemma 2.3.39, and in case (2) we can apply
Lemma 2.3.38. In both cases we obtain a vertex of degree at least Ω( 1

k3
|S∗|) =

Ω( 1
k4 log k

|S|), as desired.

2.3.8 Proof of Theorem 2.3.22

We start by recalling the setting of Theorem 2.3.22. The graph G is a connected
Ok-free graph of girth at least 11, and C is a shortest cycle in G. The neighborhood
of C is denoted by N , and the vertex set V (G) \ (C ∪ N) is denoted by R. The
subset of R consisting of the vertices adjacent to N is denoted by S. Since C is
a shortest cycle, of size at least 11, each vertex of S has a unique neighbor in N ,
and a unique vertex at distance 2 in C. Moreover N and S are independent sets.
In the setting of Theorem 2.3.22, R is a forest.
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Our goal is to prove that there is a vertex whose degree is linear in the cycle
rank r(G). To this end, we assume that G has maximum degree at most δ · r(G),
for some δ > 0, and prove that this yields a contradiction if δ is a small enough
function of k.

By Lemma 2.3.18, we can assume that G is reduced, i.e., contains no vertex of
degree 0 or 1. If G consists only of the cycle C, then r(G) = 1 and the theorem is
immediate. Thus we can assume that N is non-empty, which in turn implies that
S is non-empty since G is reduced.

Using that G is connected, remark that

r(G) = |E(G)| − |V (G)|+ 1 = 1 +
1

2

∑
v∈V (G)

(d(v)− 2) (2.16)

We start by proving that the cardinality of S is at least the cycle rank r(G).

Claim 2.3.41. |S| ⩾ r(G), and thus G has maximum degree at most δ|S|.

Proof. Observe that 1
2

∑
v∈C∪N(d(v) − 2) = 1

2
|S|. Furthermore 1

2

∑
v∈R(d(v) − 2)

is equal to 1
2
|S| minus the number of connected components of G[R], as R induces

a forest and each vertex of S has a unique neighbor outside of R. Since R is non-
empty, it follows from (2.16) that r(G) ⩽ |S|. We assumed that G has maximum
degree at most δ · r(G) which is at most δ|S|, as desired. ⌟

In the remainder of the proof, we let c > 0 be a sufficiently large constant such
that Lemmas 2.3.16 and 2.3.40 both hold for this constant.

We consider δ < 1
8k

, and use Claim 2.3.41 to apply Corollary 2.3.37 to the
subgraph H of G induced by N and F = R (which is Ok-free), with D = 2 ·
(8ck log k)2. We obtain subsets N ′ ⊆ N , R′′ ⊆ R such that if we define S ′ as the
subset of S ∩R′′ with a neighbor in N ′, we have |S ′| ⩾ 1

32D
|S| and at least one of

the following two cases apply.

1. Each connected component of H[R′′] is an S ′-clean subdivided star of degree
at least D, or

2. Each connected component of H[R′′] is an S ′-clean path.

We first argue that the second scenario holds.

Claim 2.3.42. Each connected component of H[R′′] is an S ′-clean path.

Proof. Assume for a contradiction that Case 2 does not apply, hence Case 1 applies.

Let G1 be the subgraph of G induced by C∪N ′∪R′′ (see Figure 2.7, left). Since
|C| ⩾ 11 and vertices of C have disjoint second neighborhoods in S ′, there exists
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v∗

C
N ′

S′

R′′

P
N2

S2

R2

Figure 2.7: The graphs G1 (left) and G2 (right) in the proof of Claim 2.3.42.

a vertex v∗ ∈ C that sees at most 1
11
|S ′| vertices of S ′ in its second neighborhood.

If we remove from G1 the vertex v∗, its neighborhood N(v∗) ⊆ N ′, its second
neighborhood N2(v∗) ⊆ S ′, and the corresponding branches of the subdivided
stars of R′′, we obtain a graph G2 whose vertex set is partitioned into a path
P = C − v∗, its neighborhood N2 = N ′ − N(v∗), and the rest of the vertices R2

(which includes the set S2 = S ′−N2(v∗)), with the property that each component
of G2[R2] is an S2-clean subdivided star (see Figure 2.7, right). More importantly,

|S2| ⩾ 10
11
|S ′| ⩾ 10

11
· 1
32D

|S| ⩾ 1
36D

|S|,

and the average degree of the centers of the subdivided stars is at least 10
11
D ⩾

(8ck log k)2.

Observe that P ∪N2 ∪ S2 induces a tree in G2, such that all leaves of G2[P ∪
N2∪S2] except at most two (the two neighbors of v∗ on C) lie in S2, and non leaves
of the tree are not in S2. We can now apply Lemma 2.3.40 with R = P ∪N2 ∪ S2

and L = R2. It follows that G2 contains a vertex of degree at least Ω( 1
k4 log k

|S2|) =
Ω( 1

k6 log3 k
|S|) > δ|S|. Since G2 is an induced subgraph of G, this contradicts Claim

2.3.41. ⌟

We denote the connected components of H[R′′] by P1, . . . , Pℓ, with ℓ ⩾ 1
64D

|S|.

Claim 2.3.43. There is a vertex u∗ in C which has at least 1
16(8ck log k)3

|S| endpoints
of the paths P1, . . . , Pℓ in its second neighborhood, where c > 0 is the constant of
Lemma 2.3.16.

Proof. Assume for the sake of contradiction that each vertex of C has less than
1

16(8ck log k)3
|S| endpoints of the paths P1, . . . , Pℓ in its second neighborhood.

Let G3 be subgraph of G induced by C ∪ N ′ and
⋃ℓ

i=1 V (Pi) (see Figure 2.8,
left), and let G4 be the graph obtained from G3 by contracting each vertex of
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C
N ′C
N ′ CC

Figure 2.8: The graphs G3 (left) and G4 (right) in the proof of Claim 2.3.43.

N ′ with its unique neighbor in C (i.e., G4 is obtained from G3 by contracting
disjoint stars into single vertices), see Figure 2.8, right. Note that since G is Ok-
free, G3 and G4 are also Ok-free (from the structural properties of C, N , and S,
each cycle in G4 can be canonically associated to a cycle in G3, and for any set of
independent cycles in G4, the corresponding cycles in G3 are also independent).
By our assumption, each vertex of C in G4 has degree at most 1

16(8ck log k)3
|S| + 2,

and G4 consists of the cycle C together with ℓ ⩾ 1
64D

|S| paths whose endpoints
are in C and whose internal vertices are pairwise disjoint and non-adjacent. By
Lemma 2.3.16, it follows that

1
64D

|S| < ℓ ⩽ c · 1
16(8ck log k)3

|S| · k log k,

and thus D > 2(8ck log k)2, which contradicts the definition of D = 2(8ck log k)2.
⌟

Claim 2.3.44. If the vertices in N [u∗] have average degree at least (8ck log k)2 in
S ′, then G contains a vertex of degree at least δ|S|.

Proof. The key idea of the proof of the claim is to consider the neighbors of u∗

as the centers of stars (L) in Claim 2.3.40. In order to do that, we consider the
subgraph G5 of G induced by

• the path C − u∗,
• N(u∗) and the paths Pi (1 ⩽ i ⩽ ℓ) with at least one endpoint in the second

neighborhood N2(u∗) of u∗ (call these paths P ′
1, . . . , P

′
t), and

• the neighbors of the endpoints of the paths P ′
1, . . . , P

′
t in N .

All the components of G5 − N(u∗) are either paths P ′
i with both endpoints in

N2(u∗), or a tree whose leaves are all in N2(u∗) (except at most two leaves, which
are the two neighbors of u∗ in C). See Figure 2.9, right, for an illustration, where
the vertices of N2(u∗) are depicted with squares and the components of G5−N(u∗)
are depicted with bold edges.
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C
N ′

C
N ′

u∗

Figure 2.9: The graphs G3 with the vertex u∗ (left) and the graph G5 (right) in
the proof of Claim 2.3.44.

By considering the vertices of N(u∗) and their neighbors in S ′ as stars (whose
centers, depicted in white in Figure 2.9, right, have average degree at least
(8ck log k)2) we can apply Lemma 2.3.40, and obtain a vertex of degree at least
Ω( 1

k4 log k
|S ′|) ⩾ Ω( 1

k6 log3 k
|S|) ⩾ δ|S| in G5 (and thus in G), which contradicts

Claim 2.3.41. ⌟

Observe that if the vertices of N(u∗) have average degree at most (8ck log k)2

in S ′, then u∗ has degree at least 1
16(8ck log k)5

|S| ⩾ δ|S|. If not, by Claim 2.3.44, G
also contains a vertex of degree at least δ|S|. Both cases contradict Claim 2.3.41,
and this concludes the proof of Theorem 2.3.22. □
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Chapter 3

Conclusion and Perspectives

In this thesis, we studied various structural problems, distributed into two topics:
finding small minor-universal graphs and finding large induced trees.

In Chapter 1 we studied the minor-universal graph problem for planar and
bounded genus graphs. For planar graphs, since the smallest planar minor-
universal graph known is a grid, we compared the area of the smallest grid-major of
a planar graph to the area of the smallest grid on which it can be drawn [GH23a].
We showed that is NP-complete to find the smallest grid-major of a planar graph,
even given a smallest grid-drawing of the graph. The question of Dieng and
Gavoille [DG20] whether a grid-drawing of area A implies a grid-major of area O(A)
remains open. However, we show that, when the maximum degree is bounded by a
constant, any lower bound for the grid-drawing implies a lower bound for the area
of a grid-major. Recall that Robertson, Seymour, and Thomas [RST94] proved
that a grid minor-universal for the planar n-vertex graphs has area O(n2), and
the quadratic dependency for the grid area was proved necessary. When restricted
to k-outerplanar n-vertex graphs, we show that they are minors of a grid of area
O(kn), and that this is asymptotically optimal, generalizing and improving the
O(n log n) previous upper bound for outerplanar graphs [DG20]. Then, we gen-
eralized the theorem of Robertson, Seymour, and Thomas to graph of bounded
genus, showing that for any surface of genus g, there is a graph on O(g2(n + g)2)
vertices embedded on the surface and minor-universal for all the n graphs em-
beddable on this surface [GH23b]. Our construction is inspired from the planar
case, hence the quadratic dependency in n. Note that, in contrast to the previous
results, our minor-universal graph is not a grid since it cannot be planar for g > 0.

This raised the question whether we could find a smaller planar graph minor-
universal for planar graphs, if we drop the constraint of being a grid. More pre-
cisely,

Question 1.
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Is there a planar graph on o(n2) vertices minor-universal for all planar
graphs on at most n vertices?

If such minor-universal exists, it would be interesting to see if the construction
can also be generalized to bounded genus graphs.

Moreover, thanks to the Structure Theorem of Robertson and Seymour [RS03],
several results on bounded genus graph can be generalized to the classes of graphs
excluding a fixed graph as minor. Roughly speaking, any graph excluding some
fixed graph has some kind of tree-decomposition where each bag induces a graph
“almost embeddable” on a surface of bounded genus. Therefore, it would be very
interesting to check if our construction can be generalized to these “almost embed-
dable” graphs first, and then maybe to those minor-free graphs. This leads to the
following question:

Question 2.
For every fixed graph H, is there a H-minor free graph on nO(1) vertices
minor-universal for all H-minor free graphs on at most n vertices?

In Chapter 2, we present our result related to tree structures in graphs and
more precisely to induced forests in graphs. Note that in this chapter, we worked
on both tree decomposition and induced trees, so an interesting related question,
asked by Dvořák, was the following: can the tree of a tree decomposition appear
(for some containment relation) inside the graph, without having to increase the
width much? We answered in the negative [BCH+23] even for the minor relation,
for which we need to increase the width of the decomposition by a function of n.

In the first part, we studied the case where the forest is a path and focused on
a conjecture of Esperet et al [ELM17]. Is it true that k-degenerate graphs with a
path of size n as subgraph also have a path of size (log n)Ω(1) as induced subgraph?
We proved that in the case of graphs of pathwidth less than k, there is always an
induced path on 1

3
n

1
k vertices, but some have no induced path on more than n

2
k

vertices [HR23]. From this result, we generalized their (log n)Θ(1) lower bound
for bounded genus graph to the topological-minor-free graphs, going along with
their conjecture. However, the conjecture has recently been disproved [DR23] by
Defrain and Raymond, who found a family of 2-degenerate graphs whose induced
paths have order O((log log n))2. This however exhibits three main behaviours
for the order of the induced path in a k-degenerate class: nΘ(1), (log n)Θ(1) and
(log log n)Θ(1). This raises the question:

Question 3.
Can we categorize the k-degenerate graph classes into three categories,
those of longest induced path of size nΘ(1), (log n)Θ(1) or (log log n)Θ(1)?
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Moreover, for several classes, we have an upper and a lower bound on the order
of a longest induced path.

Question 4.
How close can we get for the upper and lower bounds on the order of a
longest induced path, for the graph classes we studied?

Also, instead of looking for path-like graphs as substructure, we can also look for
them as super structure. More precisely in [DHK+21], we looked for the smallest
number of edges to add to a graph (from various chordal classes), to turn it into
a special case of interval graph, called a proper interval graph.

The second part of this chapter is a generalization of the Erdős-Pósa Theo-
rem [EP65], showing that sparse n-vertex graphs with a small number of cycles
that are pairwise not adjacent admit a set of logarithmically many vertices whose
removal yields a forest [BBD+23].

A classical generalization of Erdős-Pósa theorem is the study the Erdős-Pósa
property of a class. A graph class H has the Erdős-Pósa property if there is a
function f such that for every graph G and integer k, the graph G contains either
k vertex-disjoint subgraph isomorphic to a graph of H, or a vertex set of size
f(k), whose removal yields a graph with no subgraph isomorphic to a graph in
H. Thus Erdős-Pósa theorem means that the cycles have the Erdős-Pósa property
with f(k) = O(k log k). With our new result in mind, it would be interesting to
look into a variant of the Erdős-Pósa property for sparse graphs, where instead
of looking for k vertex-disjoint copies of graphs from H, we look for independent
copies of them, up to authorising the function to depend logarithmically in the
order. We thus can explore this new problem:

Question 5.
What graph classes have the “independent” Erdős-Pósa property?
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