STRUCTURE DE GRAPHES: MINEURS ET ARBRES INDUITS

Claire HILAIRE

Encadrants: Marthe BONAMY et Cyril GAVOILLE

4 Juillet 2023

STRUCTURE OF GRAPHS: MINORS AND INDUCED TREES

Claire HILAIRE

Advisors: Marthe BONAMY and Cyril GAVOILLE

July 4th, 2023

Graphs in real life

Introduction •000

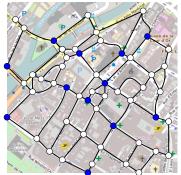
Graphs in real life

Introduction 0000

With a given budget, can we build bike lanes such that a path between two points of interest using those lanes is at most 2× longer than using all the roads?

Graphs in real life

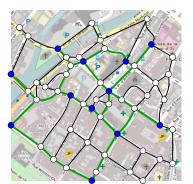
Introduction 0000

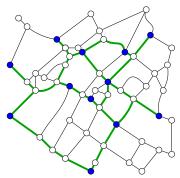


With a given budget, can we build bike lanes such that a path between two points of interest using those lanes is at most 2× longer than using all the roads?

or-Universality On planar gra

Introduction
•000



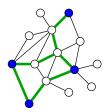


With a given budget, can we build bike lanes such that a path between two points of interest using those lanes is at most 2× longer than using all the roads?

Structure of graphs

Introduction 0000

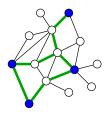
If the graph is planar (no edge crossing):



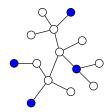
Structure of graphs

Introduction 0000

If the graph is planar (no edge crossing):

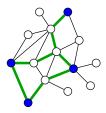


If the graph is a tree (no cycle):

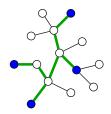


Structure of graphs

If the graph is planar (no edge crossing):



If the graph is a tree (no cycle):

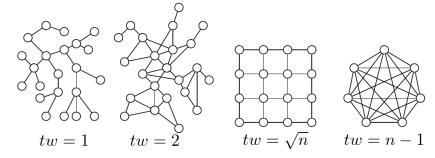


Easy!

The treewidth

Introduction

The treewidth of a graph G(tw(G)) measures how far from a tree G is.



Bounded treewidth generalizes trees.

Introduction 0000

Н

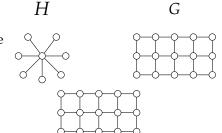
H is a minor of *G* if *H* can be obtained from G by taking a subgraph

contracting edges

Introduction

H is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges



Introduction 0000

> *H* is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

Introduction

H is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

Introduction 0000

> *H* is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

Introduction

H is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

Introduction 0000

H is a minor of *G* if *H* can be obtained from G by taking a subgraph

contracting edges

Robertson and Seymour (1986)

• G has no fixed planar H as minor \Rightarrow G has bounded treewidth.

Introduction

Н

 \overline{C}

H is a minor of *G* if *H* can be obtained from *G* by

- taking a subgraph
- contracting edges

Robertson and Seymour (1986)

- ▶ *G* has no fixed planar *H* as minor \Rightarrow *G* has bounded treewidth.
- ▶ *G* has no $k \times k$ -grid as minor \Rightarrow *G* has bounded treewidth.

Introduction

Н

 $\overline{}$

H is a minor of *G* if *H* can be obtained from *G* by

taking a subgraphcontracting edges

Robertson and Seymour (1986)

- ▶ *G* has no fixed planar *H* as minor \Rightarrow *G* has bounded treewidth.
- ▶ *G* has no $k \times k$ -grid as minor \Rightarrow *G* has bounded treewidth.

Robertson, Seymour and Thomas (1994)

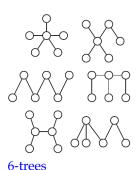
Every planar n-graph is minor of a $2n \times 2n$ -grid.

Let \mathcal{F} be a family of finite graphs.

6-trees

Let \mathcal{F} be a family of finite graphs.

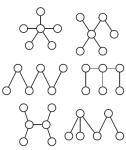
U is **minor-universal** for \mathcal{F} if any $G \in \mathcal{F}$, *G* is a minor of *U*.



Let \mathcal{F} be a family of finite graphs.

U is **minor-universal** for \mathfrak{F} if any $G \in \mathfrak{F}$, *G* is a minor of *U*.

 \rightarrow What is the order of a smallest *U* given a certain property?

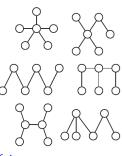


6-trees

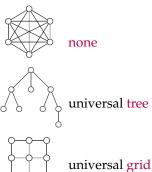
Let \mathcal{F} be a family of finite graphs.

U is **minor-universal** for \mathcal{F} if any $G \in \mathcal{F}$, *G* is a minor of *U*.

 \rightarrow What is the order of a smallest *U* given a certain property?



6-trees



What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

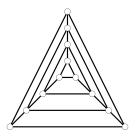
• planar: $O(n^2)$

[RST94]

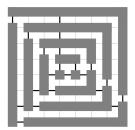
What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

• planar: $\Theta(n^2)$

[RST94,BCEMO19]



nested triangles

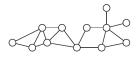


What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

▶ planar: $\Theta(n^2)$

[RST94,BCEMO19]

• tree/outerplanar: $\Theta(n)$



What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

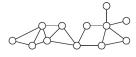
• planar: $\Theta(n^2)$

[RST94,BCEMO19]

• k-outerplanar: $\Theta(kn)$

[GH23+]

• tree/outerplanar: $\Theta(n)$



What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

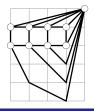
• planar: $\Theta(n^2)$

[RST94,BCEMO19]

• k-outerplanar: $\Theta(kn)$

[GH23+]

- tree/outerplanar: $\Theta(n)$
- ► *n*-area-grid drawing:



grid drawing

grid minor

What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

• planar: $\Theta(n^2)$

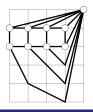
[RST94,BCEMO19]

- k-outerplanar: $\Theta(kn)$
- tree/outerplanar: $\Theta(n)$

[GH23+]

• *n*-area-grid drawing: $O(n\sqrt{n})$

[DG20]



 $\times \sqrt{n}$ grid drawing grid minor

Claire HILAIRE

What is the order (area) of a smallest minor-universal grid of a given family of *n*-graphs?

▶ planar: $\Theta(n^2)$

[RST94,BCEMO19]

• k-outerplanar: $\Theta(kn)$

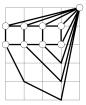
[GH23+]

• tree/outerplanar: $\Theta(n)$

• *n*-area-grid drawing: $O(n\sqrt{n})$

[DG20]

▶ minor of *n*-area-grid \Rightarrow drawing on the $\Delta^2 n$ -area-grid. [GH23+]

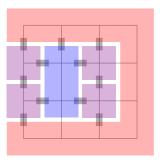


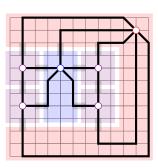
grid drawing $\begin{array}{ccc} \times \sqrt{n} & \\ & \text{grid minor} \\ \times \Delta^2 & \end{array}$

From universal grid to grid drawing

Gavoille and H. 2023+

Minor of *n*-area-grid and max degree Δ \Rightarrow drawing on the $\Delta^2 n$ -area-grid.





What is the order of a smallest minor-universal of a given family of *n*-graphs if the graph is in the family?

What is the order of a smallest minor-universal of a given family of *n*-graphs if the graph is in the family?

- Order of a *tree* minor-universal for the trees on *n* vertices:
- $\rightarrow \Omega(n^{1.724...})$ and $O(n^{1.895...})$

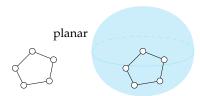
[Bod03,GKŁ+18]

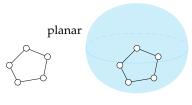
What is the order of a smallest minor-universal of a given family of *n*-graphs if the graph is in the family?

- ▶ Order of a *tree* minor-universal for the trees on *n* vertices:
- $\rightarrow \Omega(n^{1.724...})$ and $O(n^{1.895...})$ [Bod03,GKŁ+18]
- ▶ Order of a *planar* graph minor-universal for the planar *n*-graphs
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid [RST94]

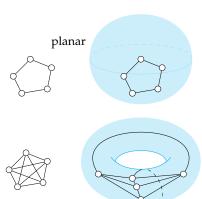
Graphs on surfaces

Graphs on surfaces

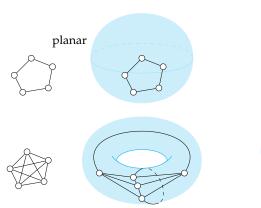




Graphs on surfaces



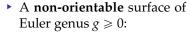
Graphs on surfaces

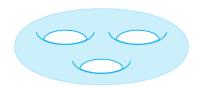


Classification of surfaces

Every connected surface without boundary is homeomorphic to either:

An **orientable** surface of Euler genus $2g \ge 0$:





here g = 3

Minor-universal graph

What is the order of a smallest minor-universal of a given family of *n*-graphs if the graph is in the family?

- Order of a *tree* minor-universal for the trees on *n* vertices:
- $\rightarrow \Omega(n^{1.724...})$ and $O(n^{1.895...})$ [Bod03,GKŁ+18]
- ▶ Order of a *planar* graph minor-universal for the planar *n*-graphs
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid [RST94]

Minor-universal graph

What is the order of a smallest minor-universal of a given family of *n*-graphs if the graph is in the family?

- Order of a *tree* minor-universal for the trees on *n* vertices:
- $\rightarrow \Omega(n^{1.724...})$ and $O(n^{1.895...})$ [Bod03,GKŁ+18]
- Order of a *planar* graph minor-universal for the planar *n*-graphs
- $\rightarrow O(n^2)$ with the $2n \times 2n$ -grid [RST94]

Gavoille and H. (2023+)

For every *n* and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the *n*-graphs embeddable on Σ .

Minor-universal grid for planar graphs

Robertson, Seymour and Thomas (1994)

For every n, there is a planar graph on $O(n^2)$ vertices minor-universal for the planar n-graphs.

Minor-universal grid for planar graphs

Robertson, Seymour and Thomas (1994)

For every n, there is a planar graph on $O(n^2)$ vertices minor-universal for the planar *n*-graphs.

Step 1: Getting a Hamiltonian planar major

Minor-universal grid for planar graphs

Robertson, Seymour and Thomas (1994)

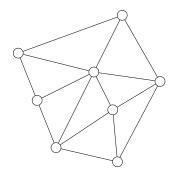
For every n, there is a planar graph on $O(n^2)$ vertices minor-universal for the planar n-graphs.

Step 1: Getting a Hamiltonian planar major

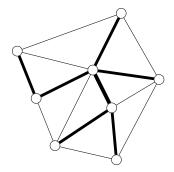
Every planar *n*-graph is a minor of a Hamiltonian planar 2*n*-graph.

Step 2: Getting the grid

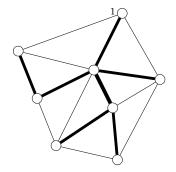
Step 1: Getting a Hamiltonian planar major



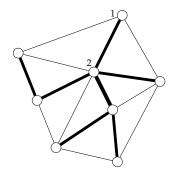
Step 1: Getting a Hamiltonian planar major



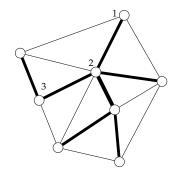
Step 1: Getting a Hamiltonian planar major



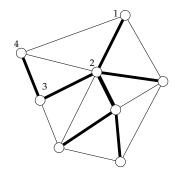
Step 1: Getting a Hamiltonian planar major



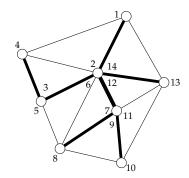
Step 1: Getting a Hamiltonian planar major



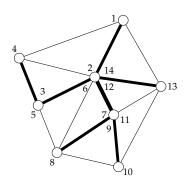
Step 1: Getting a Hamiltonian planar major

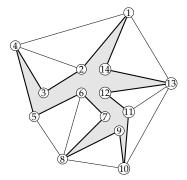


Step 1: Getting a Hamiltonian planar major

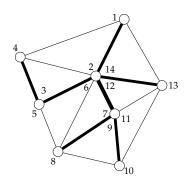


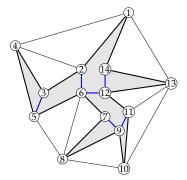
Step 1: Getting a Hamiltonian planar major



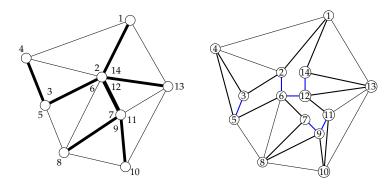


Step 1: Getting a Hamiltonian planar major

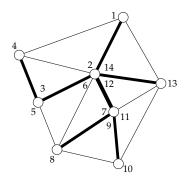


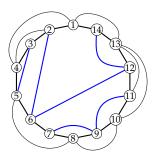


Step 1: Getting a Hamiltonian planar major

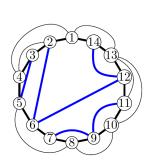


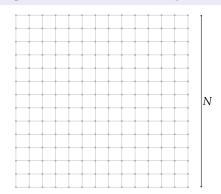
Step 1: Getting a Hamiltonian planar major



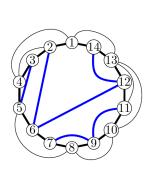


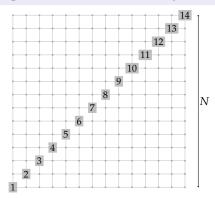
Step 2: Getting the grid



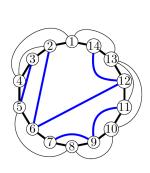


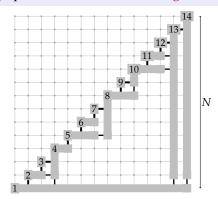
Step 2: Getting the grid



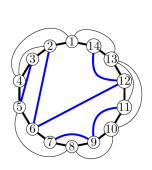


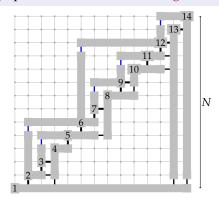
Step 2: Getting the grid



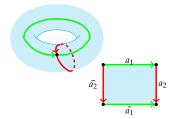


Step 2: Getting the grid

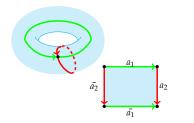


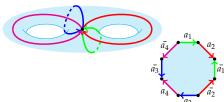


Polygonal schema for surfaces

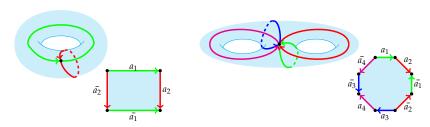


Polygonal schema for surfaces





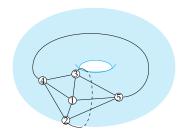
Polygonal schema for surfaces

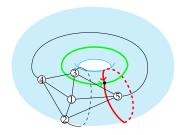


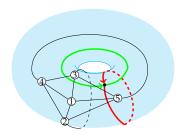
Classification Theorem

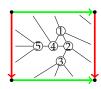
Every compact, connected surface of Euler genus $g \ge 1$ is homeomorphic to a polygonal surface given by one of the following **canonical signatures** σ :

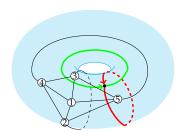
- Orientable: $a_1a_2\bar{a_1}\bar{a_2}\dots a_{g-1}a_g\bar{a_{g-1}}\bar{a_g}$
- **Non-orientable:** $a_1a_1 \dots a_ga_g$

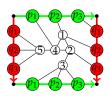


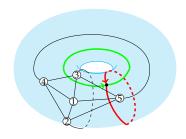


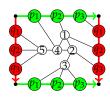




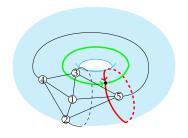


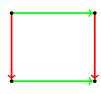






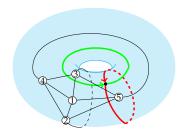
G has a **polygonal embedding** characterized by:

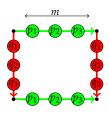




G has a **polygonal embedding** characterized by:

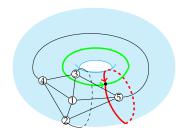
▶ →,→: sides of the $|\sigma|$ -gon respecting the signature σ .

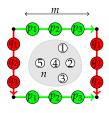




G has a **polygonal embedding** characterized by:

- ▶ \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.

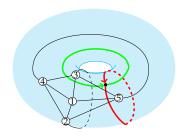


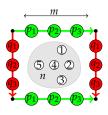


G has a **polygonal embedding** characterized by:

- ▶ →,→: sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most n internal vertices (1,2,3,4,5).

Polygonal embedding for graphs

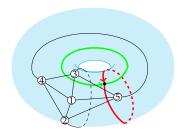


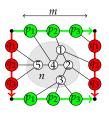


G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

- ▶ →,→: sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most n internal vertices (1,2,3,4,5).

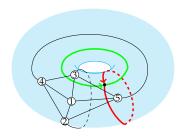
Polygonal embedding for graphs

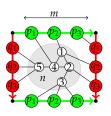




G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

- ▶ →,→: sides of the $|\sigma|$ -gon respecting the signature σ .
- at most *m* external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- \triangleright at most *n* internal vertices (1,2,3,4,5).





Surfaces

G has a **polygonal embedding** of type $P_{\sigma}(m, n)$:

depends only on *g* and orientability

- \rightarrow , \rightarrow : sides of the $|\sigma|$ -gon respecting the signature σ .
- ▶ at most m external vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$.
- at most *n* internal vertices (1,2,3,4,5).

 $\sim O(n+g)$ [LPVV01,FHdM22]

Sketch of the proof

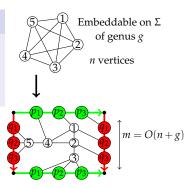
Gavoille and H. (2023+)

For every n and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the n-graphs embeddable on Σ .

Sketch of the proof

Gavoille and H. (2023+)

For every n and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the n-graphs embeddable on Σ .



$$P_{\sigma}(m, n)$$
 with $|\sigma| = 2g$

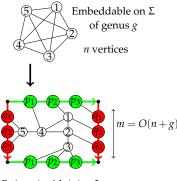
Sketch of the proof

Gavoille and H. (2023+)

For every n and every surface Σ of Euler genus $g \ge 1$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the n-graphs embeddable on Σ .

Technical theorem.

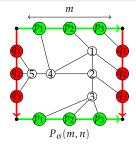
 $\forall \sigma, m, n$, there is a graph with a polygonal embedding $P_{\sigma}(m+2n, |\sigma|^2(m+2n)^2)$, minor-universal for the graphs with a polygonal embedding $P_{\sigma}(m, n)$.



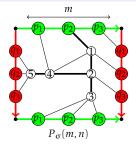
$$P_{\sigma}(m, n)$$
 with $|\sigma| = 2g$

Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m + 2n, 0)$.

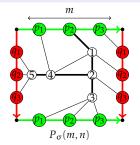
Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m+2n, 0)$.

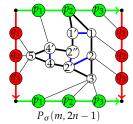


Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m+2n, 0)$.

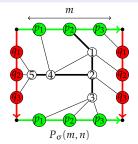


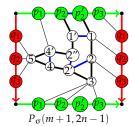
Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m+2n,0)$.



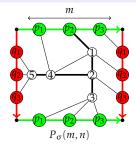


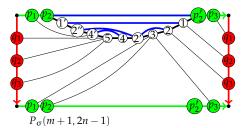
Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m + 2n, 0)$.



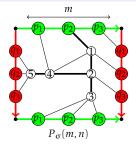


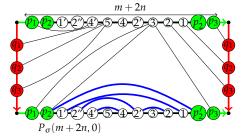
Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m+2n,0)$.





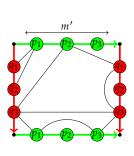
Let *G* be a graph with a polygonal embedding $P_{\sigma}(m, n)$. *G* is minor of a graph with polygonal embedding $P_{\sigma}(m + 2n, 0)$.

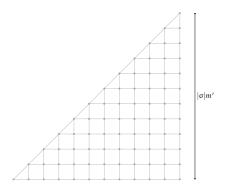




step 2/2: grid-like minor-universal graph

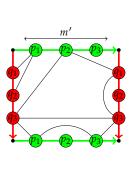
There is a graph with polygonal embedding $P_{\sigma}(m', \frac{(|\sigma|m')^2}{2})$ minor-universal for the graphs with polygonal embedding $P_{\sigma}(m', 0)$.

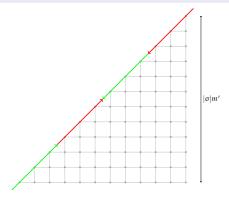




step 2/2: grid-like minor-universal graph

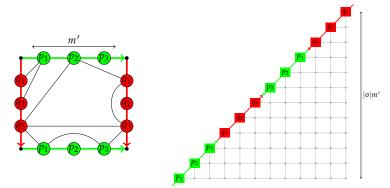
There is a graph with polygonal embedding $P_{\sigma}(m', \frac{(|\sigma|m')^2}{2})$ minor-universal for the graphs with polygonal embedding $P_{\sigma}(m', 0)$.





step 2/2: grid-like minor-universal graph

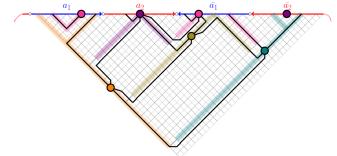
There is a graph with polygonal embedding $P_{\sigma}(m', \frac{(|\sigma|m')^2}{2})$ minor-universal for the graphs with polygonal embedding $P_{\sigma}(m', 0)$.



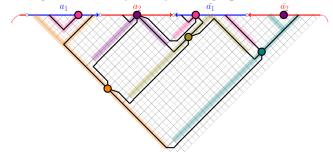
• $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;

- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- *G* minor of *A*-area-grid $\Rightarrow \Delta^2 A$ -area-grid drawing of *G*;

- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- ► *G* minor of *A*-area-grid $\Rightarrow \Delta^2 A$ -area-grid drawing of *G*; \rightarrow Drawing of area $O(\Delta^2 g^2 (n+g)^2)$ for graphs of surfaces.

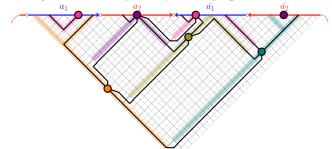


- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- ► *G* minor of *A*-area-grid $\Rightarrow \Delta^2 A$ -area-grid drawing of *G*; \rightarrow Drawing of area $O(\Delta^2 g^2 (n+g)^2)$ for graphs of surfaces.



Subquadratic lower bound on minor-universal for planar?

- $O(g^2(n+g)^2)$ minor-universal graph for graphs on surfaces;
- ► *G* minor of *A*-area-grid $\Rightarrow \Delta^2 A$ -area-grid drawing of *G*; \rightarrow Drawing of area $O(\Delta^2 g^2 (n+g)^2)$ for graphs of surfaces.



- Subquadratic lower bound on minor-universal for planar?
- Extension to H-minor-free graphs?

Other contributions:

- Sparse kC₃-induced-minor-free graphs have logarithmic treewidth (with M. Bonamy, E. Bonnet, H. Déprés, L. Esperet, C. Geniet, S. Thomassé, and A. Wesolek, in SODA'23)
- Long induced paths in minor-closed graph classes and beyond (with J.-F. Raymond, in Elec. J. of Comb. 2023)
- On tree decompositions whose trees are minors (with P. Blanco, L. Cook, M. Hatzel, F. Illingworth, and R. McCarty, arXiv)
- On the proper interval completion problem within some chordal subclasses (with F. Dross, I. Koch, V. Leoni, N. Pardal, M. I. L. Pujato, and V. F. dos Santos, arXiv)

Thank you!